Homework problems on Fluid Dynamics

(1.63J/2.21J)

Chang C. Meir, 2002
hotspring.tex

1. Hot spring at Yellowstone In a heated rock there is a fracture in the shape of a tube of circular cross section of radius a. The axis of the tube is a semicircular arc of large radius $R \gg a$. Referring to figure 1 both ends of the fracture pierce through the ground surface. At one end A water enters the fracture from a reservoir at depth h and shoots out at the other end B.

Let the geothermal temperature in the rock be varying linearly with depth:

$$
\begin{equation*}
T_{R}=T_{o}(1-b z)=T_{o}(1+b R \sin \theta) \tag{1}
\end{equation*}
$$

where b is a positive constant, Derive an approximate theory for the cross-sectional averaged temperature of water at the exit. Identify the the central dimensional parameter in the problem, and plot the exit temperature as a function of this parameter. This problem may

Figure 1: Hotspring at Yellowstone Park
suggest ways to extract geothermal energy from hydraulic fractures.

Remarks:

To go through the formal procedure of normalization, etc., would take too much time. Try to get to an approximation quickly by, ignoring the effects of curvature whenever possible
(since $a / R \ll 1$), assuming that the flow is driven by pressure gradient alone, but the fluid temperature in the crack depends on the flow.

Suggested steps

- Ignore the curvature of the tube, find the velocity distribution $u_{\theta}(r)$ in the tube due to the pressure head difference $\rho g h$.
- Let the fluid temperature be

$$
\begin{equation*}
T_{f}(r, \theta)=T_{R}(\theta)+T^{\prime}(r, \theta) \tag{2}
\end{equation*}
$$

Invoke linearity if necessary and solve first for the radial dependence of T^{\prime}, then take the cross-sectional average, e.g.,

$$
\begin{equation*}
\bar{T}_{f} \equiv \frac{1}{\pi a^{2}} \int_{0}^{a} 2 \pi r T_{f} d r \tag{3}
\end{equation*}
$$

- Use integrated energy balance to derive a differential equation for \bar{T}_{f}.
- Recall that the ODE

$$
\begin{equation*}
\frac{d y}{d x}+h y=g(x) \tag{4}
\end{equation*}
$$

can always be solved by rewriting it as

$$
\begin{equation*}
e^{-h x} \frac{d}{d x}\left(y e^{h x}\right)=g(x) \tag{5}
\end{equation*}
$$

