Homwork, Fluid Dynamics (1.63J/2.21J),

C. C. Mei, 1-cavity.tex, 1999

Cavity collapse

A spherical cavity of initial radius R_{o} suddenly collapses.Ignore surface tension and water coressibiiilty. Th ecavity has the pressure p_{o} which is smaller than th pressure at infinity p_{∞}.

Use continuity that

$$
\begin{equation*}
4 \pi r^{2} u=\text { constant for } \quad r \geq R(t) \tag{0.1}
\end{equation*}
$$

where $R(t)$ is the radius of the cavity, and $u(r, t)$ is the radial velocity. Use also the law of mometum conservation

$$
\begin{equation*}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}\right)=-\frac{\partial p}{\partial r} \tag{0.2}
\end{equation*}
$$

Integrate the momentum equation from $r=R$ to $r=\infty$ to get a differential equation of the following form

$$
\begin{equation*}
R \frac{d^{2} R}{d t^{2}}+\frac{3}{2}\left(\frac{d R}{d t}\right)=-\frac{p_{\infty}}{\rho} \tag{0.3}
\end{equation*}
$$

and show that it can be rewritten as

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(R^{3}\left(\frac{d R}{d t}\right)^{2}\right)=-\frac{\Delta p}{3 \rho} \frac{d\left(R^{3}\right)}{d t} \tag{0.4}
\end{equation*}
$$

With the initial conditions

$$
\begin{equation*}
R(0)=R_{o}, \quad \frac{d R(0)}{d t}=0 \tag{0.5}
\end{equation*}
$$

Show that the time to complete collapse is

$$
\begin{equation*}
T=\sqrt{\frac{3 \rho}{2 \Delta p}} \int_{0}^{R_{o}} \frac{d R}{\sqrt{\frac{R_{o}^{2}}{R^{2}}}-1} \tag{0.6}
\end{equation*}
$$

Evaluate the integral in terms of Gamma functions.

