CCL 4/2/95	1.322	
4/97 3/98 Strength-Det	ormation Bahavior of Satu	roted Clays
401 and Drai	nad / Undrained Stability ((Parts DIE of Outline)
T STABILITY	PROBLEMS AND DRAMED	STRENGTH PARAMETERS
	· · · · · · · · · · · · · · · · · · ·	Handrut Sheet
A. Classes of Stabilit	Problems & Types of Stability	Anakuas
<i>P</i>		[A1,2]
Kevreur of 1.361	Part I-3	
B. Datermination of	Effective Stress Failure Enve	lopes for CD Case (IB)
1. Use of CDS CU	Tests	`
i) CDDS 2)	CDTX 3/CUTX	1,2
2 m		
1) Nound is	CE, MAN	З
1) rurannen E	r : High OCL	· · · · · ·
3) Common Friend	it testing mattern	· //
4) Comparison of 1	ESE and correlations	4-6
	1	
C. Long Term (CDC)	use) Stability: Problem Soils	(IC)
C.I Stull Fissure & a	mel Stratilied Claus & Clau Sha	ler
1) In hoduction		1
2) Definition of 3 1	michopes (peak, fully soffened . 5 res	idual) 2
3) Measurement of	residual envelope	3
4) Overvein of fally	soffened ve residual enveloper	4
5,6,7) Recommendates	in for selecting c' \$ p' as per .	a1995 4-7
and results of	from recent research	
8) Basic research	m \$f	8,9
9) Empirical con	relation	8,14,11
C2 Hilly Shut	ash Seriesten Claus (Querk Cla)
1) Back ground	and manine state (& mere the	12
2) Nouver		/2
3) Puebe		12,13
C.3 Conn. Valley	Varved Clays	14-

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Cradina

<u> </u>	16 4/3/01	/-364
	MINI-Proble	m No.1 on Strength of Clays
Topic HON	in Approx otes Date	Questions
IB Messium of C' 5	nt 4/4/01 P'	1) What can cause major errors in the measurement of c' 5 \$ for CD analysis of homogeneous cohoise sorts.
I C Problem Sorto	4/4/01	1) For cuts in shift fissured & shatified soils a) When safe to use peak invitope? b) "NC "? are these 3 c) When must use of? d) When get contriction of above? (TH = 50-400kta) 2) What is effect of using undisturbed or remoted elag on value of of 3) For cuts finatural slopes in queck claps, is CD ESA Maguilibum 24 & peak ESE safe?
II A su fr UU Case	<i>4[9[01</i>	1) FVT a) a) Why doce is decrease with mereasing PE? b) What sale > console to use is? 2) CPTU a) How is N& determined? b) What is the major cause of problem in getting consident 9E profiles in Soft clays?
		3) DMT : How relieve is sufor - 0.22 (OCR) 0.8 when OCR = (0.5Kg) 1.56 >
		4) When would you replace an conf. compression test with a UVC fast $(T_c = O_{VO})$?
		5) Oid Bishop & Bjernin (1960) conclude that both UUC & sul FV) + reliable su for UU Con?

۰,

NCL 3/1	19/01
---------	-------

Topics	Handout Notes	'77 SOA Tokyo	່ 85 SOA S.F.	CCL'91 TL	Other	Comments (~ Nex Classe
1) Stability Closser & Types of Analysis	IA ·			1,2	1.361 IZ3-152	(27)
2) CD Case • Measurement C'S\$ • Problem Scale	IB IC			-		
3) W Case: Std Practice & In Site Testing	ĨA	4.2	3,2,3,3	4,6	1.361 IA-192	(1-)
1) Sample Distubarce	Πß	2.2.7	2.3	Ø	áboc	(2)
5) Shese System & Anischopp (Combined old §) New noke	ДC	2.2.2	2.4	Ð	-	(4±) 4
6) Time Effects. Strani Rata É Creep	ΠŊ	2.2.6	-	-	-	(2+)
7) CU Case	ΠE	-	-	3,576)	Koutsoffer ; Lada (1985)	(1)
8) Hone Problem on Design Manuar	•					(1)

CCL 4/2/96 1.322 4/97 Strength Deformation Bahavior of Sciturated Clays 3/98 and Drainad / Undrained Stability (Parts DSE of Outline) 4OI I STABILITY PROBLEMS AND DRAINED STRENGTH PARAMETERS Handout sheets A. Classes of Stability Problems & Types of Stability Analyses [A1,2) · Review of 1.361 Part I-3 B. Datermination of Effective Stress Failure Envelopes for CD Case IB 1. Use of COS CUTists 1,2 1) CDDS 2) CD TX 3) CU TX 2, Misullanens 1) Variation in ESE : OCR =1 3 " " " : High OCR 2) 3) Common freasial testing problems 4) Comparison of ESE and correlations 4-6 C. Long Term (CD Case) Stability: Problem Soils ΤC 4/2/01 CHARLES C. LADD 2 Wed 4/4/01 since 3,4 rewriting - updaking not yet finished 3,5,0 7, 8 9

22-141 22-142 22-144

\$ 8 8 8

ACTIVITY AS 301 SO SHEFTS 5 SQUARE

4/2/96	16							
IB VETERMINATION OF EFFECTIVE STRESS FAILURE	ENVELOPE							
FOR CD CASE (Sciturated Natural Cohasiva Soils)								
1. USE OF CD FICU TESTS								
Note: Limited data on "ordinary" claye inducates that to	has							
little effect on values of c' & b' (ic, using to > tion reg	uned obtain 4520)							
1.1 CD Direct (Box) Shear Tests								
a) Advantages								
· Simple equipment & every to reson · Low cost · Short &	- Elday							
b) Disadvantages	₹4							
1) Non-uniform stress-shain condition - no Ton & data.								
2) Unknown shese condition at failine of	<u></u>							
@ Th= Tff; S=45+p/2; Th/o'= tan d' Th								
(b) $T_h = g_f ; \delta = 45^\circ; T_h/\sigma_0' = \sin\phi$								
Th/or'= 0.5 -> \$'= 266° @ ~								
= 30,0° (b) Stat. practice	τ ₆ Λ							
3) Tilting at high Th/o's Tensin It	Compusa							
- Tensile T at leading portion	- <u>e</u> <u>x</u> i							
	X= gap							
4) Run test too fast (ty ce = 10 tion)	Drained yUS=0							
\wedge OC NC $+$	Too fast, vs ≠0 RANKED							
The Measured	c' too high -							
unsefe	FS for shallow							
$-\gamma_s$ τ								
A B								

.

.

CCL	4/5/94	1.32
	4/2/01	

Bur the feature bland

2.4 Comparison of ESE and Correlations

a) Natural BBC : CKOUCIE ; OCR=1.5-6; Max. O.61 ... (CAIT Project)

	SHANSEP	Re compression		
	c'/Jym d'	c'/op Ø'		
ΤС	0.017 28.5	0.044 29		
TE	0.055 19	0.031 27		
	Large defference	Similar values		
	TC vs TE	TC VS. TE		

NOTE: Will discuss different between TC no.TE more fully rinder ITC b) Friction Angle vs. Plasticity Index : Normally Consolidated Soils 1) NAVDOCKS DM-7 (1961)

2) Mesri & Abdel-Ghattar (1993) JGE, ASCE, 119(8), 1516-1249

IB5

Figure by MIT OCW.

CCL 4/89 41/01 IC ESA: CD Case 1.322 LONG TERM (CO)STABILITY : PROBLEM SOILS STRATIFIED CLAYS AND CLAY SHALES CI STIFF FISSURED 1.1 Introduction 1) Critical condition $Sd = T_{4} : C' + (\sigma - u_s) \tan p'$ Erecavation (-4) $FS = \frac{Sd}{Rm} = \frac{tom \phi'}{tom tom \phi'}$ Equilibrin 25 7 2) Values of C' & & to use in analysis depend on: a) 1st time ve prior (reactivated) slide. b) Homogeneous (also protably low PI & CF = day fraction) vs. Non-homogeneous (NH) steff clay & clay shales that contain (1) Fissures = small, random oriented discontinuities (like closed crocks; some may be shickensided = "polished") (2) Bedding planess - farming tion : These are especially important if more plastic than "bulk" soil and have a higher insite Shahfuid deque of parallel particle orientation NOTE: NH can have either or both (plus other features such as foints and faults , although these more typewilly associated with nork) 3) To appreciate problem with selection of c's & need to understand differences time ESE as function of degree of shearing

No. 5505 Engineer's (

Computation Pad

CCL 4/89 4/1/01 1.322 IC ESA: CD Case 1.3 Measurement of Residuel Envelope ...) ha material Property. S to reach residual -Sim precut , Same value whether lest = 5-50 cm intact Undist. vs remolded or NC = OC · Little effect of shain rate (unless very fast) logs . But must shear sufficiently to ottain mar particle orientation . : Plat Elon no 103 S (displacement) 2) Testing methode a) Repeated direct shear, is shear to Si, push back, shear again, etc. Either precut natural (to greatly reduce 5) } Both used · On remold & consolidate on plate (Main " b) Rotational shear - Ning shear t (cm) ID 5.1 Haward (La Gatta 1970) 7.1 0.4 t Imperial College & NGI Best procedure -10,2 15.2 1.9 envelope. Stark (Eid (1993), Ud I 10 7 05 Typical ds/dt = Se 1cm/day (Modifiel Bromhcad ring shear) 3) Some results · See Fig 14 below - same result on pricut we intact (needed much larger 5) also note reducing Tor /on with increasing on = curved envelope O Intact Specimen Normalized Shear Precut Specimen 0.3 Stress (τ/σ'_n) 0.2 0.1 tan¢r { 0 0 100 200 300 400 500 600 700 800 900 Effective Normal Stress (kPa) Relationship between normalized shear stress and effective normal stress for Portuguese Bend bentonitic tuff. Ca Mont. LL = 98 PI = 61 CF = 68 Figure by MIT OCW. Adapted from: Stark { Eid (1993) GTJ, ASTM 16(1)

Figureer's Computation Pad

Fig. 21. Rupture surfaces predicted by the analyses on 3:1 slopes, 10 m high, with surface suction 10 kPa and varying K_0

Row 5505 Engineer's Computation Pad

•

Fig. 5. Typical shear stress-displacement curves and strength envelope for direct drained shear tests on Lower Oxford Clay specimens sheared parallel to the bedding

CCL 4/6/89 1	322	IC
4/90 4/96	3/98 4/3/01	

1.8 Basic Ruscarch on pr Kanney (1967) Olso Conf; (1977) ICSMAR

Mineral	%-2,u	9/e Salt	ω, (1.)	Ip(1,)	¢r	(tanp'r)
Quartz	100	-		0	35	(0.70)
AHapulaite	74	-	345	240	29.6	(0.57)
No Illita	100	O	51	18	16.2	(0.29)
		30	99			()
Na. Mant.	100	0	/325	1270	4.0	(0.07)
/ 14	,	30	620			()

 $\begin{aligned} M_{1x} tures of massive \notin Clay minerals & \\ R \phi'_{r} &= \frac{Tan \phi'_{r} (Mixture) - Tan \phi'_{r} (Clay)}{Tan \phi'_{r} (Massive) - Tan \phi'_{r} (Clay)} \end{aligned}$

* Sec IC9

1.9 Empirical Correlations · Voight (1973) gest (23(2) · Lupini et al (1981) gest 31(2) + fundamental studies - See ICID · Deere Pr n PF IC10 · Stark ! Eid (1994) JGE, Asce, 120(5) ICH CCL Higher F. am / o Low Ip : Relatively little particle rementation CF <25] CF > 56%. High Ip : Significant particle reorientation Lown Fiam /o (Can get highly polished surface) Skemptin (1985) Jest 35(1)

42.382 100 SHEETS 5 SC 42.382 100 SHEETS 5 SC 42.389 200 SHEETS 5 SC

CCL 4/2/87 1.322 4/89 4/96 10 Residual Friction Angle of Soils Kenney (1977) "Residual Strength of Mineral Mixtures" 9th ICSMFE Vol. 1 pp. 155-160 Rusults from repeated Direct shear at $\sigma'_n = 1 \, kg/cm^2$ $R\phi'_{r} = \frac{Tan \phi'_{r}(Mixture) - Tan \phi'_{r}(Clay)}{Tan \phi'_{r}(Massive) - Tan \phi'_{r}(Clay)}$ TABLE 11. RESULTS OF RESIDUAL STRENGTH TESTS ON MIXTURES. Low Clay Mineral Residual State $\sigma_a' = 1.0 \text{ kg/cm}^2$ Content % dry wt. Mixture Salinity gm/l к % Volume Clay and V "High Clay" tg øn Sand particles whet revents of clay particles Stal 0 % A. MIXTURES CONTAINING MONTMORILLONI are revere 50/50 25/75 10/90 5/95 Montmorillonite - Na and Quartz 50 25 10 5 0.09 0.11 0.42 0.61 0 92 80 60 54 869 54 90 78 84 75 63 3 89 54 86 61 86 61 200 96 39 72 51 34 150 87 61 52 42 32 90 95 50/50 25/75 10/90 Montmorillonite - Na and Quartz 0.24 0.36 0.56 50 25 10 50 25 44 62 81 89 50 75 90 50 75 56 38 19 11 Montmorillonite - Na and Amorphous SiO 50/50 25/75 0.21 30 28 Bentonite and Quartz 75/25 50/50 25/75 15/85 Masser - Clay ٥ 0.12 0.40 Bentonite and Amorphous SiOs 91/9 82/18 32 39 49 65 81 92 70 56 68 60 47 51 0.10 68 61 51 35 19 8 68/32 47/53 25/75 10/90 0.13 n=602+2-1.5 0.18 0.27 Theil B. MIXTURES CONTAINING KAOLINITE AND GRUND Content of massive minerals , % volume 80 60 40 20 TE <mark>موا</mark>ما ရစ် (မ) 0.32 0.49 0.65 Kaolinite and Quartz 75/25 25 50 75 0 40 30 23 44 31 88 73 54 89 74 91 79 62 91 762 50/50 25/75 50 25 Kaolinite and Amorphous SiOs 75/25 50/50 25 50 0.32 75 50 0 Grundite - Na and Quartz 75/25 50/50 25/75 25 50 75 0.25 0:40 0.62 0 75 50 25 75 50 25 67 49 36 63 40 36 equation 1) 08 Grundite - Na and Quartz 75/25 50/50 25/75 25 50 75 0.22 0.40 0.62 30 06 <u>8</u> ▲ Koolinite 8 C. MIXTURES CONTAINING HYDROUS MICA ▼ Grundite mixtures Hydrous mica I - Na 75/25 50/50 48 65 0 52 35 0.35 74 65 75 66 74 65 78 67 80 66 83 67 æ 30 31 32 33 30 30 41 35 31 22 41 27 and Ouartz Hydrous mica I - Na and Quartz 48 65 48 65 48 65 33 55 33 55 33 55 0.38 75/25 50/50 52 35 52 35 52 35 52 35 67 45 Tite 30 5 04 Value Hydrous mica I - K and Quartz ۵ 75/25 50/50 0.41 Hydrous mica I - K and Quarts 30 75/25 50/50 0.49 Montmorillonite 02 Hydrous mica II - Na 0.32 0 75/25 mixtures Symbols-see Fig. I Hydrous mica II - Na 75/25 50/50 67 45 0.45 30 φ_(() Hydrous mica III - Na 0 75/25 67 45 54 40 85 74 0.44 0.48 'n 20 40 60 80 100 Hydrous mica III - Na 30 75/25 33 55 67 45 52 46 85 76 0.44 Content of clay minerals and water, % volume Fig. 4. Relative residual strength

5 SOUARE 5 SOUARE 5 SOUARE

42.381 50 SHEETS 5 42.382 100 SHEETS 5 42.389 200 SHEETS 5

And and

<u>CCL 4/6/89 1.322</u> 4/90 4/01 ESA CD Case C2, HIGHLY STRUCTURED, SENSITIVE CLAXS (Quick Clayp) 2.1 Background · Almost flat slope (Noung) . " Mina" D geometry - massive flow slide Flake and/n retrogressive - Putures 3rd floor - Rissa film · Approach = f(location) 2.2 Norway Gas (1981) ICSMFE · analysis 5 "flake" type slides : Treats as CU Case via USA CK.DIDSS --- CKOU DSJ Th/dyo In Suhi 7/0 = 0.18 ± 0.035 €√ Lat CKOUDS Culoro = 0.195 ± 0.025 "Collapse" -Undrained consistion : 45070 2.3 Quebec Lefebre (1981) CGJ p 420 . Treats as CD Case using equilibrium re, but "large strain" value of E' 5 B' CIDC(L) large strain (E = 102) used to select is \$ See ICB ε Ene CCL: Seems more empirical than 2.2, but applied to circular are type failing

C 12-381 50 SHEETS 5 SQU 12-387 100 SHEETS 5 SQU 12-387 200 SHEETS 5 SQU

SEBJ NBR 1983

117/85 1.322 SLOPE STABILITY 4/83 4/90 4/96 +/01 CCL 4/17/85 C3. Effective Stress Envelopes for Conn. Valley Varved Clay Ladd (1975) MIT Report Lada & Foott (1977) FHWA Report a) CDDS Parallel to Varves (Clay w/ 0p, = 3.5 TSF) Shear through "sitt" layer Shear " clay" layer 11 3 Rasults -> 3 envelopes depending on J. laval Sut 2 7 clay (TSF)1 0.13 $\overline{0}$ 4 5 2 3 O σ_v (TSF) b) Summary of ESE Data Bulk Ip . 15-30% Ladd & Foot (1977) FHWA CU Shear Across Varves c/orm = 0.012 \$=30 Compression of Extension SHANSEP Test CD shear in Clay Varves c'/Jp = 0.025 \$ = 200