	CCL 2/97 1.322 Consolidation Part II		
	2/98 3/1/99 I-D CONSOLIDATION : MAGNITUDE OF FINAL SETTLEMENT 3/1/01		
	(Note: Ruplace $\overline{\sigma}$ mth σ').	Page No.	
	1. Rola of Ordomater	1	
	1.1 5 Objectivis		
لف مله بدر مو منه م	1.2 Std. Paredure: marmontal		
SI COUNT SI	2. Settlement Computations	2	
EFS EVERA EFS EVERA FFTS EVERA FFTS EVERA FFTS EVERA FFTS EVERA FFTS EVERA FFTS EVERA OVCLED WHA	3. Mechaniums of Volume Change	3	
2003 200 200	4. Mechanism's Causing Preconsolidation Pressure	З	
、 () () () () () () () () () ()	4.1 Physical Significance		
nai "Branc	4.2 Four Principal mechanisms		
Mati	4.3 Muchanical 4.5 Drained Crep 4.4 Desiciation 4.6 Physics - Chemical		·
	5, Sample Disturbance	10	
	5.1 Schematic		
	5.2 Effects (general)		
	6. Graphical Methods to Estimate of	"	
	6.2 Casagrande 64 Buttenfield		
	6.3 Schmertmann 6.5 Shain Energy = Wak/Unit Volume.		
	7. Assassment of Effects of Samala Distuction	12	
	7.1 general guidance 7.5 Fin in		·
	7.2 Evidence of Excessive Districtory		
	8 Effect of Time and End-of-Primary (EOD)	14	
	E. 1 Effect of t/tp w/ incremental		
	8.2 How to Obtain EOP from Uncremental Tests B.3 (PST		
	8.4 CGT		
	9. Miscellaneous	17	
	9.1 Temperature 9.2 Pore Fluid		
	9.3 Side Friedom (see 1.32)		
	10. <u>Practical Problem (Mini-Problem)</u> Later		
		r	

CCL 3/3/87 1.322 3/88 1-D Pet Bat II (1.1)

$$\frac{147}{140}$$
 1-D CONSOL/DATION: MAGNITUDE OF FINAL SETTLEMENT
1. ROLE OF OEDOMETER (1-D Consolidation Test)
1.1 Objectives of Test - Sitems
1.1 Objectives of Test - Sitems
1.2 Ch, RR, SR - computating
3. C. + Ade of primery construction
5.3 Ke: $\sigma_{n,1}^{*}\sigma'_{n,2}$ for Exe o (specify register, Rg; Hung FE of GSM)
1.2 Std. Procedure - Incremental (ASTM D2435-90)
1.3 Stating σ_{-0} and σ_{n} : when add wate?
2. $LIR = 1(Standard)$ as
When recluee $2 \leq 6$
3.3 $t_{c} = 24hr. (SH): Has g2 EOP?
4.1 Misc -
. Max. Stress to define Vel $5\sigma'_{p}$ -
. Si - always check
. Felter inactivid - paper (control)
Seating
 $\frac{1}{2}\sigma'_{p}$
 $\frac{1}{2}\sigma'_{p}$$

1-D Pcf = Part I CCL 3/3/87 1.322 3/89 2/97-3/0101 3. MECHANISMS OF VOLUME CHANGE (Part A, I) Rebound 1) Elastic particle deformation : especially "bending" platy particles 2) Change in "closest" spacing (~ constant orientation) 3) Change particle orientation & sliding at contacts 4) "Particle" crushing · Clay floces faggregates Sand 4. MECHANISMS CAUSING PRECONSOLIDATION PRESSURE 4.1 Physical Significance $\overline{\sigma_p} = \sigma_p = \overline{\sigma_{ym}} = P_c'$ Yield Stress for 1-D loading separating "alastic" behavior - small strains & ~ racoverable vs " plastic" behavior - large strains, mostly non-recoverable σ_{vo} 1 TP $\bar{\sigma}_{p}$ 1 0 log Tyc log tr

CCL 3/3/87 1.322 3/89 2/97 1-D fcf = Part II "Four" Principal Mechanisms 4.2

TABLE V SF'85

P66

Preconsolidation Pressure Mechanisms (For Horizontal Deposits with Geostatic Stresses)

	Category		Description	Stress History Profile	In situ Stress Condition	Remarks / References
A)	Mechanical One Dimensional	1) 2)	Changes in total vertical stress (overburden, glaciers, etc.) Changes in pore pressure (water table, seepage conditions, etc.)	Uniform with constant $\sigma_p - \sigma_{vo}$ (except with seepage)	K _O , but value at given OCR varies for reload vs. unload	Most obvious and easiest to identify
B)	Desiccation	1) 2)	Drying due to evaporation vegetation, etc. Drying due to freezing	Often highly erratic	Can deviate from K _O , e.g. isotropic capillary stresses	Drying crusts found at surface of most and depo- sits; can be at depth within deltaic deposits
C)	Drained Čreep (Aging)	1)	Long term secondary compression	Uniform with constant op/ovo	Ko, but not necessarily normally consolidated value	Leonards and Altschaeffl (1964); Bjerrum (1967)
D)	Physico-Chem <u>i</u> cal	1) 2)	Natural cementation due to carbonates, silica, etc. Other causes of bonding due to ion exchange, thixotropy, "weathering" etc.	Not Uniform	No Information	Poorly understood and often difficult to prove. Very pronounced in eastern Canadian clays, e.g. San- grey (1972), Bjerrum (1973), Quigley (1980)

1.1 $\Delta \dot{\sigma}' = \Delta \sigma - \Delta u$ 4.3 "Mechanical" Constant a) 00 1) Overburden 2) Prior structures 3) Glaciation

4) Waves - DT (Madsen, 1978 geot)

NOTE: Also review 1.361 Notes Part IV-4

Erratic

Extent of the "classical" Wisconsin glaciation of North America

Figure by MIT OCW.

Extent of the Weichsel Glaciation of Europe

Figure by MIT OCW.

1-D Pcf Part # CCL 3/3/87 1.322 3/89 2/97 3/01 4.6 Physico-Chemical (see Table V, p4) 1) Discussion (Cementation & other causes of "banding") · Certain deposite do contain potential cementing agents like carbonates, al-Fe oxides, silica, organie matter, etc. · Other causes even less well documented · CCL believes can be very significant in some deposits, but hard to prove NOTE: 4 combination of high IL + high Tp} then quite likely + brittle day behavior (e.g. Champlain Class 2) <u>Example</u> - James Bay B-6 (p8) Why conclude Marine Clay had significant cementation? • Of microsietent of mechanical, desication and aging . Variable of on block samples . 1-D - very computerible at the > Op CKouc - very brittle with & high yuild surface Irg o've 3) <u>Example</u> - Nebraska Pumped Storage Project (p9) Plarre Shale : upto 50%. Cacos WN = 20-25% Iz = O Ip ~ 50±20% 300' Missouri River · Most ordometer data - op = 160 \$ 20 atm vs. Jeology preducted only BO atm no are Tvo = 10 atm . If mechanical op → V. high Ko → significant impact on slope stability ("spalling") and tunnel lining design . Mc goven SM - is high of due to cementation ? -leach with HCl - lower op? - correlation with % Ca CO3 4) Examples - MIT Biology Bldg (pga); EB CAIT (pile)

1-D fcf Part I

Figure by MIT OCW.

Adpated from: Mc Gowen & Ladd (1982) ASTM STP TTT

Consolidation I

p9a

PRECONSOLIDATION PRESSURE (ksc). 0'P

CCL 3/3/87 1.322 3/80 1-D fcf Part II 10 2/97 3/2/99 3/9/93 5. SAMPLE DISTURBANCE (see Fig. 2-6, ploa) σyo ď, 5.1 Schematic $\hat{\sigma}_{p}$ 40 · Moderate quality · Odd savare disturbance 1 ε C Validity of parallel assumption vs Mechanisms Lab (Not for cementation) log over 5.2 Effects of Disturbance 1) Lower curve 2) Obscure & usually lower est. 5 3) Signifance incr. recompression compressibility :. Should include? 4) May lower virgin compressibility (PNotes) ·Table 2-2 - low-moderate St Corr./meas. CR = 1.15 ±0.05 f but can be much larger for S-shaped curves (using JH) €.9., CAIT BBC 0.25 + 0.7 (p116) Orinoco (104 0.25 - 0.35 (p13 4, b) <u>.</u> .

50 SHEETS 5 SQUARE 100 SHEETS 5 SQUARE 200 SHEETS 5 SQUARE

1

(CL3/2/99

CLIS/25/67 - Reconstruction of Insitu Compression CUIVE Using Schmartmann's Mathod JHS(1955) "The undistudied consolidation of clay", 1955 Trans ASCE, 120, 1201-1233

NOTE: CCL recommends using linear (not curred) recompression and vergin compression lines to obtain DC vs log The

Elmina 2-6

CCL 3/3/87 1.322 1-D. fcf Part # 3/88 2/97 3/2/99 2/101 6 GRAPHICAL METHODS TO ESTIMATE OF 6.2 Casagrande (AC) · Use standard size scale : CCL prefers 3 cycle & X // · Most common mith DEV/DLC = 10+2% MIN a · Add min-max. 6.3 <u>Schmertmann</u> (Fig. 2-6 P Notas, pioa) Er mA× · No published update since 1955 · Advantage - "insitu" curve log T've 111 · NOT APPLICABLE TO LOW OCR 4 4 4 4 4 4 . CCL prefers using linear (not curved) recompression - virgin compression * lines to obtain De mily The 6.1 Testing Soils with S-Shaped VCL (7) - pila SBIEB CAIT Test Sites : Stress history . pilb : Typical compression curves & values of CR 6.4 Butterfield (1979 gest. No.4) · Not much backup log (1+2): . CCL - MIT experience - not valid (Q.9. HP. No.4) 10g[(1+C)(1-E)] -> 109 Tre (NOTE: MIT-SI user log & no log over to cover very large range in d've) 6.5 Strain Energy = Work / Unit Volume (Covered 1.361) · Sac p12 {p12a (Note: delete U/R data; muit use mux. CR fn VCL) · Use of linear scale - more precise of than via AC need data at The < The to define initial slope 6.6 Recommendations 1) alway use AC since std. practice & Simple to apply 2) But SE preferred since more accurate, less judgement (esp. of rounded curves) and can automate, plus lineir The scale 3) See p 12 b for example of comparing SEn AC

PIIa

$$\frac{CCL}{2}/7/69} - 1.322$$

$$\frac{1-D Pcf P_{4} + II}{Ye}$$

$$\frac{12}{Ye}$$

$$\frac{1}{Ye}$$

$$\frac{STRAIN ENERGY = WORK PER UNIT VOLUME}{SE}$$

$$\frac{Refarences}{SE}$$

$$\frac{W}{W}$$

$$\frac{Refarences}{SE}$$

$$\frac{Refarences}{W}$$

$$\frac{Refarences}{SE}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{(3) Becker, Crooks, Been i Jefferies (1987), (an Geol. I., 24(4))}{Definition}$$

$$\frac{Definition}{Stain Enargy = Work / Unit Volume - \int (T_{i}' de_{i} + T_{i}' de_{i})$$

$$\frac{Oadometer}{Ref. 3}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain Enargy = Work / Unit Volume - \int (T_{i}' de_{i} + T_{i}' de_{i})$$

$$\frac{Oadometer}{Ref. 3}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain Enargy = Work / Unit Volume - \int (T_{i}' de_{i} + T_{i}' de_{i})$$

$$\frac{Oadometer}{Ref. 3}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain Enargy = Work / Unit Volume - \int (T_{i}' de_{i} + T_{i}' de_{i})$$

$$\frac{Oadometer}{Ref. 3}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain E AW/H = 000}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain E AW/H = 000}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain E AW/H = 000}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Stain E AW/H = 000}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 20(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 20(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Crooks i Graham (197k), geot. 29(3)}{Crooks i Graham (197k), geot. 29(3)}$$

$$\frac{10 Cro$$

Figure by MIT OCW.

MHP CCL 11/24/94 م کی ا p126 CCL 3/9/95 1.322 II 2/97 20 18 H & A Op (AC) = 1.75 + 0.718 Op (SE) 16 maybe conservative values $\sigma'_p(Ac) = \sigma'_p(sE)$ 14 Strain Energy of (kst) -MIT of (Ac) = 0.35+0.925 of (SE) 12 Ò. 8 D 10 $oldsymbol{eta}$ $\sigma_p'(AC)$ Symbol ßγ 1 8 H } A (91) X MIT* \odot 6 Bornàs SB2-40, 48, 49 \$ 61 4 14 10 12 16 20 * CCL "best estimate" - A. Casagrande of (kst)

Fig. Comparison of Precansolidation Pressures Estimated From Casagrande and Strain Energy Techniques for 17 Octometer Tests on BBC (Fixed piston samples from SB 00044)

Cunsol. Part # CCL 2/27/97 1.322 13 2/98 3/2/99 3/10) ASSESSMENT OF EFFECTS OF SAMPLE DISTURBANCE ON OD 7.1 General Guidance 1) Used mudded hole (3.8 = 5), FP samples & deband 2) always use radio graphy whenever possible - Select best quality soil for testing , or , avoid more highly disturbed soil . Even best quelity may show evedence of distutance, c.g., rounded rear edge 3) always run su index above/below consolidation specimiens to see if soil is weaker / stronger than typical (e.g., p 13a, b) 5) Measurements of T's in companion UUC tests also helpful 5) always compare of profile with in setu testing data from FVT, CPTU, etc. (mini-problem, Section 10) K 7.2 Evidence of Excessive" Disturbance 1) Increased Er at The compared to typical data (goes with lower of 100) 2) Lower CR than typical and/or less 5-shaped than typical and more rounded than typical near op σ, 3) However, as of now, no definitive methodogy to obtain consisted values of op 3 7.3 Examples $\sigma_{v}'=31$ 1) Offshore Venezula, Orinoco Clay (p13a; 6 + Fig 10, p13c) · 1st test - "OCR"= 0.56 m 2nd test - OCR = 1.15 Underconsolidated? . Note very large increase in su with depth below top of tube (gross distinton) · See Fig. 10 for conclashin with Ev at TVO 2) Floating foundation on very thick verved day (Fig. 4, p13c) 3) Er et Tro dete on BBC from CAIT SB STP (p13d) . Neur sample extrusion technique à la Dr. Germaine (developed fur Arché site) uses plans wie around parimeter after pre-cut top / battom based on X-ray 4) TPM ('96) Sample Quality Designation (A > 5) for OCR < 4 ± 1 (plotted p 13 d) . What SQO needed for reliable of ? . Incs. The so man E. even with yo very high quality samples (p13d)

Figure by MIT OCW. Adapted from: Ladd et al. 1980.

Figure by MIT OCW. Adapted from Steward, Lacy & Ladd : ASCE P'94 Conf.

Large shopping mall with floating foundation on thick deposed of varied day in upper state NY 1) Initial oldoneter - "underconsolidated" over bottom 70' (altho. CPTU dissepation of president - hydrostatic u) 2) Subsequent CRSC at MIT on best greatity day from radiographe - 2 values of Tp' slighty below hydrostatic The

where used plano wire to cut bond between BBC ! Shelby tube

Figure 5-14: South Boston Elevation vs. Axial Strain at Overburden Stress from CK₀ and Typical Oedometer Tests

CCL 3/3/87 1.322 1-0 fcf Part II 14 2/97 2/98 3/99 3/1/01 8. EFFECT OF TIME AND EOP 8.1 Effect of the with Incremental Oud. (Note: Get same results from running CRSC Measured of tests too slow) - Same strain at yield ± EOP at tp (= 10 min - 2hr to the Hol = 1 cm) Q - lotp 100tp 109 Tyc' · Obtain above via different tests with varying t or same tast with data plotted varyingt, or CRSC with Varying E. Not controversial concept. for t ≥ tp 8,2 How to Obtain EOP From Incremental Tests 1) See Fig. 2-11 & Notes (p14a) 2) Typical differences of EOP vs I day = 15±5% 3) Std. practice (ASTM D2435-90 allows eithin to a constant to up to 24h) - Most use to = 24hr (except Ud I & MIT) 4) Problems in practical application · tp varies OC - NC. CCL recommendation. . Hard to define low-LIR & near of · get typical NC to \$ (the with both TES log t methods use throughout, e.g. to estimate dios at to t= 10 min low we n.i to 2h high up A State State State State Very Important

50 5HEETS 100 5HEETS 200 5HEETS

42 382

k

Figure 2-11

•

CCL 3/87 1,322

Leroyail at al (1983) CGJ No4

806

CAN. GEOTECH. J. VOL. 20, 1983

TABLE 1. Geotechnical properties of clays

1-D fcf Part #

Champlain Clays

Site	Number and symbol	Depth (m)	w (%)	wL	I _P	I _L	S _t fall cone	C _u field vane (kPa)	σ' _{vo} (kPa)	σ _{p conv} (kPa)	Reference
Berthierville	1 🔳	3.7	72	59	34	1.4	15	14	21	47	Samson <i>et al.</i> 1981 Morin <i>et al.</i> 1983
St-Césaire	2+	4.2	89	68	42	1.5	22	25	55	80	Samson et al. 1981
St-Césaire	2+	6.8	85	70	43	1.3	19	27	68	90	
Gloucester	3×	3.7	88	52	28	2.3	70	20	35	65	Samson <i>et al.</i> 1981 Leroueil <i>et al.</i> 1983
Gloucester	3×	4.1	76	53	29	1.8	35	20	38	67	
Gloucester	3×	7.5	93	53	29	2.4	. 88	25	58	87	
Varennes	4*	8.9	62	65	39	0.9	28	60	64	216	Samson et al. 1981
Joliette	5 ★	6.7	65	41	19	2.3	108	29	40	110	Samson et al. 1981
Ste-Catherine	6●	3.8	88	60	35	1.8	30	18	20	60	Samson <i>et al.</i> 1981 Morin <i>et al.</i> 1983
Mascouche	7∇	3.8	65	55	30	1.3	52	70	34	270	Leahy 1980 Marchand 1982
St-Alban	8∆	3.9	60	40	18	2.1		13	25	55	Leroueil <i>et al.</i> 1978 <i>a</i> Leahy 1980
Fort Lennox	9 🗆	6.1	60	45	22	1.7	30	30	54	105	Leahy 1980 Paguin 1983
Louiseville	100	9.2	75	70	27	1.1	22	45	58	160	Leahy 1980 Leblond 1981
Batiscan Other sites	11♦ ♦	7.3	80	43	21	2.7	85	25	60	88	Bouchard 1982 Authors' files

FIG. 7. Normalized preconsolidation pressure - strain rate relationship.

Maan & range for & typical Oad. at t= 1 day \bigcirc t=tp or 2 11 u u u ugao in CRSC ...

22 300 260 SHITIS S SUCH

16 :

.

.

 $W_{1}(0)$

CL 3/2/99 1.322

Consolidation Part I

Boudall, her muil & marthy (1994) "Visions behavion of natural clays" 13th ICS MFE, New Delle, Vol. 1, 411-440

1.1.0	Cepsh (n)	I.p (1)	Type of ordeneter test	d 'p (30*c)	hange of temperature, *c	Reference	Symbol used in Fig. 8
Secthierville	3.15-3.50	25	CHE, 4,-1.0 x 10-4-1	68.5	5-35	Present study	0
•	10	٠	cms, 4,+1.5 x 10-4-1	1.5 x 10 ⁻¹ 0 ⁻¹ 50 1.6 x 10 ⁻¹ 0 ⁻¹ 52.5		:	:
	•		cms, 4,-1.6 x 10-%-1				
Louiseville	8.70-8.76	39	CHS. 4.=1.5 x 10-4-1	175			- 22
	8.75-0.82	39		194	-		
	4.44-4.54	14		780	-		*
•	5.60-5.72	24	•	1060		•	
Argile noire		32	Conventional	-	20-95	Despax, 1975	•
		Instropic consolidation		25-51	Campanella and Mitchell, 1968	•	
Sickebol 3.0-7.0 60		CR5, 0.0024mm/min	54	7-30	Tidtors and stillers, 1989	۰	
Lulet	4.0		Conventional	50	5-55	Eriksson, 1969	

Variation of the Normalized Preconsolidation Pressure $(\sigma_p'/\sigma_p'(20^{\circ}C))$ with Temperature

Figure by MIT OCW.

Engineer's Computation Pad

170

$$\frac{19}{3/83} \frac{1}{3/83} \frac{1}{3} \frac{1}{3}$$

$$\begin{array}{cccccc} Ccl & 3/4/89 & 1.322 & IT 1-0 \ Pet \\ \frac{14}{1479} & Supplement to Effect of Soll Conc on Water Content (her W=1,009kc) \\ \hline Definitions & Phase Relations \\ W = Write \\ W' = Write \\ W' = W' \\ (1 - C/Y_{C}) W_{S} = W' \\ (1 - C/Y_{C}) W_{S} + W' \\ W' = W' \\ (1 - C/Y_{C}) W_{S} + W' \\ W' = W' \\ W' = W' \\ (1 - C/Y_{C}) W_{S} + W' \\ W' = W' \\ (1 - C/Y_{C}) \\ W' = W' \\ W' = W' \\ (1 - C/Y_{C}) \\ W' = W' \\ (1 - C/Y_{C}) \\ W' = W' \\ W' = W' \\ (1 - C/Y_{C}) \\ W' = W' \\ W'$$