1.264 Lecture 26

Security protocols

Next class: Anderson chapter 4. Exercise due before class

Encryption

- <u>Encryption</u> is the process of:
 - Transforming information (referred to as <u>plaintext</u>)
 - Using an <u>algorithm</u> (often called a cipher)
 - To make it unreadable to anyone
 - Except those possessing special knowledge, usually referred to as a <u>key</u>.
- The result of the process is encrypted information, or <u>ciphertext</u>.
- The reverse process, i.e. to make the encrypted information readable again, is referred to as <u>decryption</u>, (i.e. to make it unencrypted).

Protocols

- Security processes are called protocols. They address:
 - Identity and authentication of identity
 - Roles and authorization of roles
 - Accounting for resources used by principals
 - Including non-repudiation
 - Valid and invalid actions taken by principals, including attackers, e.g.,
 - Man in the middle attacks
 - Replay attacks, and other issues with freshness/staleness
 - Tampering with network connections
 - Impersonation, extortion, physical theft, ...
- If your organization has significant assets, you must protect against sophisticated/tailored attacks

Protocol notation example

- Notation
 - T -> G : T, {T, N}_{κτ}
 - Token T used to enter garage G (T and G are principals)
 - Token (e.g. like EZ Pass) transmits its serial number T
 - Then transmits its serial number T and a number used only once (nonce) N, encrypted with its key K_T
 - Nonce assures that message is <u>fresh</u>, not a replay
 - Nonce can be sequential, random, or third party challenge
 - Assume nonce is sequential in this protocol
 - K_T known by both T and G
 - Parking garage server:
 - Reads T
 - Looks up the corresponding key K_T from its database
 - Deciphers {T, N}_{KT}
 - Checks that the message includes T, and
 - Checks that N has not been seen before or has expected value

Exercise: flaws in garage protocol?

Describe whether it is possible to have:

- Man in the middle attack?
- Denial of service attack?
- Replay attack?
- Crack (obtain) the key?
- Other attacks that you can imagine?
- Think like a criminal...

Solution: flaws in garage protocol?

- Describe whether it is possible to have:
 - Man in the middle attack?
 - Yes. Have a rogue reader before garage entrance that reads all EZ Pass units seen. Copy the tag's message to the reader onto another unit. Use that one to enter garage.
 - Denial of service attack?
 - Yes. Break the reader, cut its power, etc. Gate will be left up
 - Replay attack?
 - No. Since each message has nonce.
 - Crack the key?
 - Yes. Attacker Z can go into garage with rogue reader and interrogate an EZ Pass unit repeatedly. Z knows part of the message is the sequential number and part is the fixed key. Z can infer K_T from enough (N, N_{KT}) pairs
 - Other attacks that you can imagine? (Easiest one!)
 - Yes. Attacker can break into car and steal EZ Pass unit

Exercise: challenge and response

- Vehicle anti-theft system as example
 - Vehicle key inserted into steering lock
 - Car key has serial number, which is its identifier
 - Engine management unit sends random number challenge to car key using short range radio
 - Car key computes response by encrypting the random number challenge and also sends car key identifier
 - Engine management unit decrypts, reads response and verifies it matches the challenge, and car key serial nbr correct
- Exercise: write out the protocol using the notation conventions from the last slide:
- E (engine)->_
- C (car key) ->_

Solution

- E (engine)-> C (car key): N
- C -> E : {C, N} _{KC}
- Note the car key must send its identifier
 - E must verify that C is valid.
 - N can often be predicted somewhat because the engine controller is simple (e.g., black hat intercepts N and knows next N is based on it)
 - Forcing black hat to find C makes break-in significantly harder
 - Key and engine management unit must be matched at time of manufacture; engine management unit must know K_c
- Notes:
 - The protocol is between a key and the engine. Since the user has the key, the key and engine are only in proximity when the user is too.
 - The key must be in the ignition for the protocol to start. This also makes the protocol better: contact rather than contactless.
 - These factors make man in the middle attacks harder, but not impossible.

Challenge response

- This is very common approach but has been broken repeatedly
 - Random numbers often not very random and can be grabbed or guessed by thief
- It is also vulnerable to man-in-the-middle attacks
 - A <-> B <-> C
 - B can masquerade as C, passing A's requests to C and sending C's responses to A. After (fraudulent) authentication, B gains access
 - Parking garage example:
 - Black hat has reader, masquerades as garage reader, interrogates card, gets its serial number T, (N,T)_{KT}, plays it to real reader, gets response back, enters garage
- Denial of service attack: jam radio frequency so car owner can't lock car when leaving

Exercise: physical security

- Pharmaceutical anti-counterfeiting
 - Manufacturer places bar code or RFID tag on each drug item
 - Store scans bar code or RFID tag to verify authenticity with manufacturer server
 - Customer has 800 number to call to verify serial number
- List possible attacks
 - Again, think like a criminal

Solution: physical security

- Pharmaceutical anti-counterfeiting
 - Place bar code or RFID tag on drug item
 - Store scans to verify
 - Customer has 800 number to call to verify serial number
- Possible attacks
 - Copy bar code or RFID tag and place on counterfeit item, sell it before the real item
 - Set up fake Web site and 800 number that will verify anything. Alter instructions to stores or consumers
 - If store can be compromised, even more attacks are possible. Store can fail to check, falsify records, etc.
 - Supply chain and transportation increasingly involved in anti-counterfeiting and other security requirements
- These are versions of replay, man in the middle...

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.