1.264 Lecture 33 (Solutions)

Telecom: Wired LAN, WAN

Next class: Green chapter 8, 32. Exercise due before class

Exercise

- What's on a telephone pole?
- Three types of network; name them
- Which is highest on the pole? Why?
- Which of these are point to point connections?
- Which are shared (point to many)?
- Which of these can carry data?
- Which of these can carry voice?
- Which have competitive (open) access?
- What type(s) of wiring does each use?

Solution

- What's on a telephone pole?
- Electric
- Phone
- Cable TV
- Which is highest on pole? Why?
- Electric, high voltage/current
- Which of these are point-to-point connections?
- Phone only
- Which are shared (point-to-many)?
- Electric, cable
- Which can carry data?
- Phone, cable, electric
- Which can carry voice?
- Phone, cable, electric
- Which have competitive access?
- Phone: unbundled to CLEC
- Cable: not competitive
- Electric: distribution monopoly, generation competitive
- What type(s) of wiring does each use?
- Phone: copper, fiber
- Cable: coax, fiber
- Electric: copper

Exercise- Maximum traditional LAN length

- Maximum LAN length: L=ct/2
- Speed of signal: c ($2 \times 10^{8} \mathrm{~m} / \mathrm{sec}, 2 / 3$ speed of light)
- Ethernet speed: s (e.g., 10^{8} bits/sec, or $100 \mathrm{Mb} / \mathrm{sec}$)
- Slot time t: 512/s (min Ethernet frame size=512 bits)
- Compute L for a $100 \mathrm{Mb} / \mathrm{sec}$ LAN (s)
- Compute L for a 1 Gb/sec LAN (s)
- You'll see the 1 Gb/sec LAN isn't feasible with traditional LAN. 1 Gblsec LAN uses:
- Full duplex (two wires per station, one to send, one to receive)
- Switches only, no repeaters or bridges, and no collisions
- Fiber optics (often), with 500 to 5000 meter segments
- Distance limited by signal fading, etc. (more on this later)

Solution

- Maximum LAN length: L= ct/2
- Speed of signal: c $\left(2 \times 10^{8} \mathrm{~m} / \mathrm{sec}, 2 / 3\right.$ speed of light)
- Ethernet speed: s (e.g., 10^{8} bits/sec, or $\left.100 \mathrm{Mb} / \mathrm{sec}\right)$
- Slot time t: 512/s (min Ethernet frame size=512 bits)
- Compute L for a $100 \mathrm{Mb} / \mathrm{sec}$ LAN (s)
- L= (2×10^{8} * 512/10 $\left.{ }^{8}\right) / 2=512$ meters= 0.5 km
- Compute L for a 1 Gb/sec LAN (s)
- $L=\left(2 \times 10^{8} * 512 / 10^{9}\right) / 2=51.2$ meters $=0.05 \mathrm{~km}$
- Even though collisions are avoided in full duplex, switched LANs, signal attenuation and other losses are limiting
- LANs typically are 5 km or less

Exercise: SONET

- You are a large airline with a single server site that handles all your reservations
- Average transaction is 10,000 bytes (80,000 bits)
- You must handle 2,000 transactions/second
- Where can you locate your servers on the network in the previous slide:
- At central office A, in a telco colocation site?
- At a SONET hub on one of the OC-12 rings?
- At a multiplexer on one of the OC-3 rings?
- Compute the server bandwidth and compare to the network bandwidth
- OC-3 is 3 * OC-1; OC-12 is 12 * OC-1; OC-48 is 48 * OC-1

Solution

- You need 80,000 * 2,000 $=160$ Mbits/sec
- OC-1 is 51 Mbits/sec
- OC-3 is $\mathbf{1 5 5}$ Mbits/sec. Not enough
- OC-12 is 622 Mbits/sec. Clearly enough
- You need to be at central office A or at a SONET hub on one of the OC-12 rings.
- You don't need the full OC-12 or OC-48 capacity. Carriers will sell you an appropriate fraction.

MIT OpenCourseWare
http://ocw.mit.edu
1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

