Capital Planning and Programming at the MBTA

Topics:

- 1. Capital Planning and Programming at the MBTA¹
 - Background
 - SGR Database Model
 - Capital Planning Analysis
 - MBTA Use of SGR

¹ Based on work by Steve Barrang, Director, MBTA Department of Capital Management, and Brian McCollom, McCollom Management

Concentrated Service Expansion

Service and Capital Spending Trends

The MBTA Capital Problem

- System has *expanded*
- Ongoing Capital Needs are greater
 - -- system renewal
 - -- system expansion
- Spending on Ongoing Capital Needs is *decreasing*

MBTA Approach

- MBTA focus is first on developing State of Good Repair (SGR) Database
- Two Project Objectives
 - Legislative: Demonstrate Ongoing Funding Needs
 - -- Engineering assessment of current assets
 - Management: Develop long range capital planning model
 - -- Project programming under constrained funding

State of Good Repair

SGR: The ideal operating condition

• A "perfect" capital replacement policy

What is SGR?

- State-of-Good Repair Replace/Renew when needed
- Assets are:
 - Renewed at critical midlife points
 - e.g., Engine replacements, bridge re-deckings, roof replacements
 - Replaced at the end of their useful lives
 - e.g., Buses 15 years Rail cars 35 years Bridges 50 years

SGR Database (Model) Requirements

- Focus on high-cost MBTA assets
 - Not a maintenance database of all assets
- Permit periodic data updates
 - Staff and resources limited
- Support objective analysis
 - Uniform criteria and process
 - Reports consequences
- Run scenarios in reasonable time frame
 - Less than 5 minutes

SGR Database — Assets Table

- Stores information about all key MBTA assets
 - Vehicles
 - Facilities
 - Systems

Asset Table Attributes

- "Condition" Measures
 - Age
 - Life
- Project "Action" Costs
 - Replacement/Renewal
 - Cash flow years
- Ranking Measures
 - Condition measures
 - Operational importance
 - Affected ridership

Scoring Candidate Actions

- Age
 - Age as % of Service Life
- Operational Impact
 - Yes/No
 - Selected assets are essential to system operations
- Cost-Effectiveness
 - Ridership/Cost of Action
 - Reflects customer service impacts

SGR Programming Process is Sequential (Year-by-Year)

- Identify candidate projects
 - Actions come due
 - Delayed projects from prior years
- Score and rank projects
- Fund projects in rank order until: Cost (project i) > Funds remaining
- Mark unfunded projects as candidates for next year
- Carryover remaining funds to next year

What are the system's needs?

- Cost to bring and maintain existing assets to the "ideal" standards
 - Capital Renewals
 - Capital Replacements

Unconstrained Funding

- Baseline comparison for all scenarios
- Simulates effect of unlimited funds applied to capital needs
- Determines:
 - Minimum time and funds needed to achieve SGR
 - "Reduce the Backlog"
 - Funds required to maintain the system at SGR

Unconstrained Funding: Backlog

Unconstrained Funding: Backlog

Annual Funding: \$350M

Annual Funding: \$450M

Hold Backlog at Present Level

Annual Funding: \$570M

Eliminate Backlog in 20 years

slide 19

Other Scenario Measures

- Beginning/Ending Period Comparisons
 - Backlog by Asset Type
 - Percent of Assets > Service Life by Asset Type
- 20-Year Totals
 - Spending by Asset Type
 - SGR Needs Funded On-time, Late, Not at All

MBTA Use of SGR Database

- Desired change in legislative capital funding
- Discussions with MBTA Board
- Potential use in the internal development of the Capital Improvement Program

Conclusion

- No transit system can meet the "ideal" system condition
 - We can make more effective decisions
 - We can optimize our investments