1.224J Recitation #4

Freight transportation

Topics

- Homework questions
- Home Depot
- MVRP: Multi vehicle routing problem
 - Applications
 - Formulation
 - Heuristics (Clarke-Wright and Polar sweep)

Homework

- Last week
 - PS 2 constraint formulations
 - No "IF" statements allowed!
 - Concave minimization example
- PS 3 and 4: Set covering and enumeration ideas

Home Depot

- 1999: 7 million LTL loads, 220,000 TL
- Pre 1996: single lane bidding!

- Very difficult for carriers.

• 1996-200, developed multi-lane bidding with i2. Implemented in 2000.

MVRP: Multi vehicle routing problem

- Find lowest cost set of routes with constraints on vehicle capacity and vehicle travel times, while satisfying pickup or delivery requirements
- TSP comparison

National Atlas of the United States, December 8, 2000, http://nationalatlas.gov

transportation management systems

Applications of MVRP

- Newspaper delivery
- Trash pickup
- National Blood Reserve
 - "The Red Cross is establishing a national blood reserve - a strategically located reserve supply of blood supported by a state-of-the-art logistics and distribution system." <u>redcross.org</u>

Multiple Vehicle Scheduling

MIP, Set Covering, Column Generation

	Route 1	Route 2	Route 3			Route M	
	C1	C2	C3			Cm	
Stop A	1	0	0	1	0	1	1
Stop B	1	1	0	0	1	0	1
Stop C	1	1	1	1	0	0	1
Stop D	0	1	1	0	1	1	1
Stop E	0	0	1	1	0	0	1
Stop F	0	0	0	0	1	0	1
Stop G	0	0	0	0	0	1	1
	0	0	0	0	0	0	1
	0	0	0	0	0	0	1
Stop N	0	0	0	0	0	0	1

•Each Row represents one of the N stops •Each Column represents a generated vehicle route and its cost •Each matrix coefficient, a_{ij} , is {0,1}, identifying the stops on the j'th route •Define Z_{ij} , {0,1}, "1" if Stop "i" is on Route "j", else "0" •Define Y_j , {0,1}, "1" if the sum of $Z_{ij} > 0$, i=1,n ; else "0" •Minimize: the sum of $C_j Y_j$, , j=1,m •Subject to: the sum of $a_{ij} Z_{ij} = 1$, j=1,m; for all i

Optimal Routing Solution

National Atlas of the United States, December 8, 2000, http://nationalatlas.gov

Heuristic Approach – Savings

Clarke-Wright "savings" algorithm, 1964

- 1. Serve each stop with direct out and back
- 2. Find savings for each pair

$$S=D_{OA}+D_{OB}-D_{AB}$$

3. Combine loads that increase savings and <V_{MAX}

National Atlas of the United States, December 8, 2000, http://nationalatlas.gov

Heuristic Approach – Polar Sweep, Gillett and Miller 1974

Sweep until filled up...

Then solve a bunch of TSPs

Clarke-Wright and Polar sweep demos