1.224J: Recitation #1

Linear programming Modeling and solution in Excel

LP basics

- Minimize (A linear function)
- Subject to (A collection of linear constraints, which are linear equalities and linear inequalities)

*Important note: linear in **decision variables**, not necessarily other data

Typical modeling steps

•Write down problem data [known information you have values for]

•Write down decision variables

•Choose what your objective is

•Write down problem mathematically, implement in Excel

New England Fisheries Crisis

Optimal allocation of fishing quotas to fishing fleets.

New England Fisheries background

- Historically, fishing (cod in particular) has been an in important livelihood along the northeast coast.
- Since the 1980's cod levels have dropped dramatically.
- Today, the challenge is to find a balance between fishermen's livelihoods and ecosystem sustainability.

Quota system

- A successful approach in Iceland, might be tried here.
- Each fishing company is assigned, or auctioned, a quota for amount of fish they can catch in a certain time frame and a certain region.
- QUESTION: How to allocate quotas?

Optimal quota allocation model

Variable	Description
S	Set of fish species
J	Set of fishing companies
TAC_s	Total allowable catch for species s
c_{js}	Cost per ton of landed fish of species s incurred by company j
p_s	Wholesale price per ton of species s
a_{js}	1 or 0 indicator for whether or not company j has the ability to fish for species s
$NR_j = \sum_s (p_s - c_{js}) x_{js}$	Net revenue to company j
r_j	Number of fishermen employed by company j
x_{js}	Quota imposed on company j regarding species s

 $\begin{array}{ll} \max & L \\ \text{s. t.} & \sum_{j \in J} x_{js} \leq \text{TAC}_s & \forall s \\ & x_{js} \leq a_{js} \text{TAC}_s & \forall j, \ s \\ & (\sum_s (p_s - c_{js}) x_{js})/r_j = L & \forall j, \\ & x_{js} \geq 0 & \forall j, \ s \end{array}$