# Transit Vehicle Scheduling: Problem Description

### **Outline**

- **Problem Characteristics**
- Service Planning Hierarchy (revisited)
- Vehicle Scheduling

## **Problem Characteristics**

- Consolidated Operations (vs. Direct Operations)
- Passengers (vs freight) being moved
- Urban vs. intercity (short vs. long trip lengths)
- Relatively high service frequency (several trips per hour vs one trip per day)
- High temporal variation in demand within day
- Feasible speeds vary by time of day if vehicles affected by traffic congestion
- Operations/service plan is stable over a period of months
- Different type of competition
- May be a public agency or a private company
- Crew costs are significant fraction of total costs
- Routes have many nodes

## Temporal Variation in Vehicle Requirements and Vehicle Blocks



## **Service Planning Hierarchy**



### **Service Planning Hierarchy**



## **Vehicle Scheduling Problem**

#### Input:

- The timetable: a set of vehicle revenue trips to be operated, each characterized by:
  - -- starting point and time
  - -- ending point and time
- Possible <u>layover/recovery arcs</u> between the end of a trip and the start of a (later) trip at the same location
- Possible <u>deadhead arcs</u> connecting:
  - -- depot to trip starting points
  - -- trip ending points to depot
  - -- trip ending points to trips starting at a different point

## **Vehicle Scheduling Problem**

#### **Observations:**

- there are many feasible but unattractive deadhead and layover arcs, generate only plausible non-revenue arcs
- layover time affects service reliability, set minimum layover (recovery) time

#### **Objective:**

- define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:
  - -- minimize fleet size (i.e. minimize #crews)
  - -- minimize non-revenue time (i.e. minimize extra crew time)

#### **Observation:**

 these are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

## Vehicle Scheduling Problem (continued)

#### **Constraints:**

- Minimum vehicle block length
- Maximum vehicle block length

#### Variations:

- Each vehicle restricted to a single line vs. interlining permitted
- Single depot vs multi-depot
- Vehicle fleet size constrained at depot level
- Routes (trips) assigned to specific depot
- Multiple vehicle types

## **Example: Single Route AB**

A B (Central City)

#### **Results of earlier planning and scheduling analysis:**

|                                     | AM Peak Period | Base Period  |
|-------------------------------------|----------------|--------------|
|                                     | (6-9 AM)       | (after 9 AM) |
| Headways                            | 20 min         | 30 min       |
| Scheduled trip time<br>(A⇒B or B⇒A) | <b>40 min</b>  | 35 min       |
| Minimum layover time                | 10 min         | 10 min       |
|                                     |                |              |

Dominant direction of travel in AM is  $A \Rightarrow B$ 

| Depart A | Arrive B |
|----------|----------|
| 6:00     | 6:40     |
| 6:20     | 7:00     |
| 6:40     | 7:20     |
| 7:00     | 7:40     |
| 7:20     | 8:00     |
| 7:40     | 8:20     |
| 8:00     | 8:40     |
| 8:20     | 9:00     |
| 8:40     | 9:20     |
| 9:00     | 9:35     |
| 9:30     | 10:05    |
| 10:00    | 10:25    |
| 10:30    | 11:05    |
| 11:00    | 11:35    |

| Depart A | Arrive B | Depart B | Arrive A |
|----------|----------|----------|----------|
| 6:00     | 6:40     | 6:50     | 7:30     |
| 6:20     | 7:00     | 7:10     | 7:50     |
| 6:40     | 7:20     | 7:30     | 8:10     |
| 7:00     | 7:40     | 7:50     | 8:30     |
| 7:20     | 8:00     | 8:10     | 8:50     |
| 7:40     | 8:20     | 8:30     | 9:10     |
| 8:00     | 8:40     | 8:50     | 9:30     |
| 8:20     | 9:00     | 9:15     | 9:50     |
| 8:40     | 9:20     |          |          |
| 9:00     | 9:35     | 9:45     | 10:20    |
| 9:30     | 10:05    | 10:15    | 10:50    |
| 10:00    | 10:25    | 10:45    | 11:20    |
| 10:30    | 11:05    | 11:15    | 11:50    |
| 11:00    | 11:35    | 11:45    | 12:20    |

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
|       | 6:20     | 7:00     | 7:10     | 7:50     |
|       | 6:40     | 7:20     | 7:30     | 8:10     |
|       | 7:00     | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
|       | 7:40     | 8:20     | 8:30     | 9:10     |
|       | 8:00     | 8:40     | 8:50     | 9:30     |
|       | 8:20     | 9:00     | 9:15     | 9:50     |
|       | 8:40     | 9:20     |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
|       | 9:30     | 10:05    | 10:15    | 10:50    |
|       | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
|       | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
|       | 6:20     | 7:00     | 7:10     | 7:50     |
|       | 6:40     | 7:20     | 7:30     | 8:10     |
|       | 7:00     | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
|       | 8:00     | 8:40     | 8:50     | 9:30     |
|       | 8:20     | 9:00     | 9:15     | 9:50     |
|       | 8:40     | 9:20     |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
|       | 9:30     | 10:05    | 10:15    | 10:50    |
|       | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
|       | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
|       | 6:20     | 7:00     | 7:10     | 7:50     |
|       | 6:40     | 7:20     | 7:30     | 8:10     |
|       | 7:00     | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
|       | 8:00     | 8:40     | 8:50     | 9:30     |
|       | 8:20     | 9:00     | 9:15     | 9:50     |
|       | 8:40     | 9:20     |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
| 1     | 9:30     | 10:05    | 10:15    | 10:50    |
|       | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
|       | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
|       | 6:20     | 7:00     | 7:10     | 7:50     |
|       | 6:40     | 7:20     | 7:30     | 8:10     |
|       | 7:00     | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
|       | 8:00     | 8:40     | 8:50     | 9:30     |
|       | 8:20     | 9:00     | 9:15     | 9:50     |
|       | 8:40     | 9:20     |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
| 1     | 9:30     | 10:05    | 10:15    | 10:50    |
|       | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
| 1     | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

11/24/03

| Veh # | Depart A | Arrive B | Depart B | Arrive A  |
|-------|----------|----------|----------|-----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>     |
| 2     | x>6:20   | 7:00     | 7:10     | 7:50      |
|       | 6:40     | 7:20     | 7:30     | 8:10      |
|       | 7:00     | 7:40     | 7:50     | 8:30      |
|       | 7:20     | 8:00     | 8:10     | 8:50      |
| 1     | 7:40     | 8:20     | 8:30     | 9:10      |
| 2     | 8:00     | 8:40     | 8:50     | 9:30 -> y |
|       | 8:20     | 9:00     | 9:15     | 9:50      |
|       | 8:40     | 9:20     |          |           |
|       | 9:00     | 9:35     | 9:45     | 10:20     |
| 1     | 9:30     | 10:05    | 10:15    | 10:50     |
|       | 10:00    | 10:25    | 10:45    | 11:20     |
|       | 10:30    | 11:05    | 11:15    | 11:50     |
| 1     | 11:00    | 11:35    | 11:45    | 12:20     |

x = from depot

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
| 2     | x>6:20   | 7:00     | 7:10     | 7:50     |
| 3     | x>6:40   | 7:20     | 7:30     | 8:10     |
|       | 7:00     | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
| 2     | 8:00     | 8:40     | 8:50     | 9:30>y   |
| 3     | 8:20     | 9:00     | 9:15     | 9:50     |
|       | 8:40     | 9:20     |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
| 1     | 9:30     | 10:05    | 10:15    | 10:50    |
| 3     | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
| 1     | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

1.224J/ESD.204J

17

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
| 2     | x>6:20   | 7:00     | 7:10     | 7:50     |
| 3     | x>6:40   | 7:20     | 7:30     | 8:10     |
| 4     | x>7:00   | 7:40     | 7:50     | 8:30     |
|       | 7:20     | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
| 2     | 8:00     | 8:40     | 8:50     | 9:30>y   |
| 3     | 8:20     | 9:00     | 9:15     | 9:50     |
| 4     | 8:40     | 9:20-> y |          |          |
|       | 9:00     | 9:35     | 9:45     | 10:20    |
| 1     | 9:30     | 10:05    | 10:15    | 10:50    |
| 3     | 10:00    | 10:25    | 10:45    | 11:20    |
|       | 10:30    | 11:05    | 11:15    | 11:50    |
| 1     | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

11/24/03

| Veh # | Depart A | Arrive B | Depart B | Arrive A |
|-------|----------|----------|----------|----------|
| 1     | x>6:00   | 6:40     | 6:50     | 7:30>    |
| 2     | x>6:20   | 7:00     | 7:10     | 7:50     |
| 3     | x>6:40   | 7:20     | 7:30     | 8:10     |
| 4     | x>7:00   | 7:40     | 7:50     | 8:30     |
| 5     | x>7:20   | 8:00     | 8:10     | 8:50     |
| 1     | 7:40     | 8:20     | 8:30     | 9:10     |
| 2     | 8:00     | 8:40     | 8:50     | 9:30>y   |
| 3     | 8:20     | 9:00     | 9:15     | 9:50     |
| 4     | 8:40     | 9:20 ->y |          |          |
| 5     | 9:00     | 9:35     | 9:45     | 10:20    |
| 1     | 9:30     | 10:05    | 10:15    | 10:50    |
| 3     | 10:00    | 10:25    | 10:45    | 11:20    |
| 5     | 10:30    | 11:05    | 11:15    | 11:50    |
| 1     | 11:00    | 11:35    | 11:45    | 12:20    |

x = from depot

11/24/03

#### **Example: Vehicle Blocks**

Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) -B (10:15) - A (11:00) - B (11:45) - ...

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 3: Depot - A (6:40) - B (7:30) - A (8:20) - B (9:15) - A (10:00) -B (10:45) - ...

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) -B (11:15) - ...

11/24/03

#### Vehicle Scheduling Model Approaches

#### Heuristic approaches:

1. Define compatible trips at same terminal *k* such that trips *i* and *j* are compatible iff :

$$t_{s_j} - t_{e_i} > M_k$$
  
$$t_{s_j} - t_{e_j} < 2 D_k$$

- where  $t_{s_i}$  = starting time for trip *j* 
  - $t_{e_i}$  = ending time for trip *i*
  - *M<sub>k</sub>* = minimum recovery/layover time at terminal *k*
  - $D_k$  = deadhead time from terminal k to depot

#### Vehicle Scheduling Model Approaches

- 2. Apply Restricted First-in-First-out rules at each terminal
  - (a) Order arrivals and departures at the terminal chronologically
  - (b) Start with (next) earliest arrival at terminal; if none, go to step (e)
  - (c) Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (b)
  - (d) Check vehicle block length against constraint: if constraining, return vehicle to depot and return to step (b); otherwise return to step (c) with new trip arrival time
  - (e) Serve all remaining unlinked departures from depot



#### **Time-Space Network Representation**



11/24/03



11/24/03

25

### **Time Space Network Representation Detail**



(*I<sub>ij</sub>, u<sub>ij</sub>, c<sub>ij</sub>*)

(minimum flow, maximum flow, cost per unit of flow)

correspond to revenue trips

deadhead trip to or from the depot or between routes, or layovers between revenue trips on same route

## **Minimum Cost Network Flow Formulation**

$$Minimize \sum_{(i,j)\in A} c_{ij} x_{ij}$$

<u>s.t.</u>

11/24/03