Transit Vehicle Scheduling: Problem Description

Outline

- Problem Characteristics
- Service Planning Hierarchy (revisited)
- Vehicle Scheduling

Problem Characteristics

- Consolidated Operations (vs. Direct Operations)
- Passengers (vs freight) being moved
- Urban vs. intercity (short vs. long trip lengths)
- Relatively high service frequency (several trips per hour vs one trip per day)
- High temporal variation in demand within day
- Feasible speeds vary by time of day if vehicles affected by traffic congestion
- Operations/service plan is stable over a period of months
- Different type of competition
- May be a public agency or a private company
- Crew costs are significant fraction of total costs
- Routes have many nodes

Temporal Variation in Vehicle Requirements and Vehicle Blocks

Vehicles
in service

Service Planning Hierarchy

Input

Function
Output

Service Planning Hierarchy

Infrequent Decisions	Service and Lost Considerations both significant	Incremental Analysis Methods Dominate
Network Design		
Frequency Setting		
Timetable Development		
Vehicle Scheduling		
Crew Scheduling		
Frequent	Cost Considerations	Computer Dominates
Decisions	Dominate	Optimization-Based

Vehicle Scheduling Problem

Input:

- The timetable: a set of vehicle revenue trips to be operated, each characterized by:
-- starting point and time
-- ending point and time
- Possible layover/recovery arcs between the end of a trip and the start of a (later) trip at the same location
- Possible deadhead arcs connecting:
-- depot to trip starting points
-- trip ending points to depot
-- trip ending points to trips starting at a different point

Vehicle Scheduling Problem

Observations:

- there are many feasible but unattractive deadhead and layover arcs, generate only plausible non-revenue arcs
- layover time affects service reliability, set minimum layover (recovery) time

Objective:

- define vehicle blocks (sequences of revenue and non-revenue activities for each vehicle) covering all trips so as to:
-- minimize fleet size (i.e. minimize \#crews)
-- minimize non-revenue time (i.e. minimize extra crew time)
Observation:
- these are proxies for cost, but a large portion of cost will depend on crew duties which are unknown at this stage of solution.

Vehicle Scheduling Problem (continued)

Constraints:

- Minimum vehicle block length
- Maximum vehicle block length

Variations:

- Each vehicle restricted to a single line vs. interlining permitted
- Single depot vs multi-depot
- Vehicle fleet size constrained at depot level
- Routes (trips) assigned to specific depot
- Multiple vehicle types

Example: Single Route AB

Results of earlier planning and scheduling analysis:

	AM Peak Period	
$(6-9 \mathrm{AM})$	Base Period (after 9 AM)	
Headways	20 min	30 min
Scheduled trip time	40 min	35 min
$(\mathbf{A} \Rightarrow \mathrm{~B}$ or $\mathrm{B} \Rightarrow \mathrm{A})$	10 min	10 min
Minimum layover time	10	
Dominant direction of travel in $\mathbf{A M}$ is $\mathbf{A} \Rightarrow \mathbf{B}$		

Timetable and Vehicle Block Development

Depart A	Arrive B
$6: 00$	$6: 40$
$6: 20$	$7: 00$
$6: 40$	$7: 20$
$7: 00$	$7: 40$
$7: 20$	$8: 00$
$7: 40$	$8: 20$
$8: 00$	$8: 40$
$8: 20$	$9: 00$
$8: 40$	$9: 20$
$9: 00$	$9: 35$
$9: 30$	$10: 05$
$10: 00$	$10: 25$
$10: 30$	$11: 05$
$11: 00$	$11: 35$

Timetable and Vehicle Block Development

Depart A	Arrive B	Depart B	Arrive A
$6: 00$	$6: 40$	$6: 50$	$7: 30$
$6: 20$	$7: 00$	$7: 10$	$7: 50$
$6: 40$	$7: 20$	$7: 30$	$8: 10$
$7: 00$	$7: 40$	$7: 50$	$8: 30$
$7: 20$	$8: 00$	$8: 10$	$8: 50$
$7: 40$	$8: 20$	$8: 30$	$9: 10$
$8: 00$	$8: 40$	$8: 50$	$9: 30$
$8: 20$	$9: 00$	$9: 15$	$9: 50$
$8: 40$	$9: 20$		
$9: 00$	$9: 35$	$9: 45$	$10: 20$
$9: 30$	$10: 05$	$10: 15$	$10: 50$
$10: 00$	$10: 25$	$10: 45$	$11: 20$
$10: 30$	$11: 05$	$11: 15$	$11: 50$
$11: 00$	$11: 35$	$11: 45$	$12: 20$

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	x-->6:00	6:40	6:50	7:30--->
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20

$x=$ from depot

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	x-->6:00	6:40	6:50	7:30--->
	6:20	7:00	7:10	7:50
	6:40	7:20	7:30	8:10
	7:00	7:40	7:50	8:30
	7:20	8:00	8:10	8:50
1	7:40	8:20	8:30	9:10
	8:00	8:40	8:50	9:30
	8:20	9:00	9:15	9:50
	8:40	9:20		
	9:00	9:35	9:45	10:20
	9:30	10:05	10:15	10:50
	10:00	10:25	10:45	11:20
	10:30	11:05	11:15	11:50
	11:00	11:35	11:45	12:20
$\mathrm{x}=$ from depot				

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$\mathrm{x}-->6: 00$	$6: 40$	$6: 50$	$7: 30-->$
	$6: 20$	$7: 00$	$7: 10$	$7: 50$
	$6: 40$	$7: 20$	$7: 30$	$8: 10$
	$7: 00$	$7: 40$	$7: 50$	$8: 30$
	$7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
	$8: 00$	$8: 40$	$8: 50$	$9: 30$
	$8: 20$	$9: 00$	$9: 15$	$9: 50$
	$8: 40$	$9: 20$		
	$9: 00$	$9: 35$	$9: 45$	$10: 20$
	$9: 30$	$10: 05$	$10: 15$	$10: 50$
	$10: 00$	$10: 25$	$10: 45$	$11: 20$
	$10: 30$	$11: 05$	$11: 15$	$11: 50$
	$11: 00$	$11: 35$	$11: 45$	$12: 20$

$x=$ from depot

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$\mathrm{x}-\mathrm{-} 6: 00$	$6: 40$	$6: 50$	$7: 30-->$
	$6: 20$	$7: 00$	$7: 10$	$7: 50$
	$6: 40$	$7: 20$	$7: 30$	$8: 10$
	$7: 00$	$7: 40$	$7: 50$	$8: 30$
	$7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
	$8: 00$	$8: 40$	$8: 50$	$9: 30$
	$8: 20$	$9: 00$	$9: 15$	$9: 50$
	$8: 40$	$9: 20$		
	$9: 00$	$9: 35$	$9: 45$	$10: 20$
	$10: 30$	$10: 05$	$10: 15$	$10: 50$
	$10: 30$	$10: 25$	$10: 45$	$11: 20$
1	$11: 00$	$11: 05$	$11: 15$	$11: 50$
	$\mathrm{x}=$ from depot			
			$12: 20$	

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$\mathrm{x}-->6: 00$	$6: 40$	$6: 50$	$7: 30--->$
2	$\mathrm{x}-->6: 20$	$7: 00$	$7: 10$	$7: 50$
	$6: 40$	$7: 20$	$7: 30$	$8: 10$
	$7: 00$	$7: 40$	$7: 50$	$8: 30$
	$7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
2	$8: 00$	$8: 40$	$8: 50$	$9: 30->y$
	$8: 20$	$9: 00$	$9: 15$	$9: 50$
	$8: 40$	$9: 20$		
	$9: 00$	$9: 35$	$9: 45$	$10: 20$
1	$9: 30$	$10: 05$	$10: 15$	$10: 50$
	$10: 00$	$10: 25$	$10: 45$	$11: 20$
	$10: 30$	$11: 05$	$11: 15$	$11: 50$
1	$11: 00$	$11: 35$	$11: 45$	$12: 20$

$$
x=\text { from depot }
$$

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$x-->6: 00$	$6: 40$	$6: 50$	$7: 30--->$
2	$x-->6: 20$	$7: 00$	$7: 10$	$7: 50$
3	$x-->6: 40$	$7: 20$	$7: 30$	$8: 10$
	$7: 00$	$7: 40$	$7: 50$	$8: 30$
	$7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
2	$8: 00$	$8: 40$	$8: 50$	$9: 30-->y$
3	$8: 20$	$9: 00$	$9: 15$	$9: 50$
	$8: 40$	$9: 20$		
	$9: 00$	$9: 35$	$9: 45$	$10: 20$
1	$9: 30$	$10: 05$	$10: 15$	$10: 50$
3	$10: 00$	$10: 25$	$10: 45$	$11: 20$
	$10: 30$	$11: 05$	$11: 15$	$11: 50$
1	$11: 00$	$11: 35$	$11: 45$	$12: 20$

$$
x=\text { from depot }
$$

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$x-->6: 00$	$6: 40$	$6: 50$	$7: 30--->$
2	$x-->6: 20$	$7: 00$	$7: 10$	$7: 50$
3	$x-->6: 40$	$7: 20$	$7: 30$	$8: 10$
4	$x-->7: 00$	$7: 40$	$7: 50$	$8: 30$
	$7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
2	$8: 00$	$8: 40$	$8: 50$	$9: 30-->y$
3	$8: 20$	$9: 00$	$9: 15$	$9: 50$
4	$8: 40$	$9: 20->y$		
	$9: 00$	$9: 35$	$9: 45$	$10: 20$
1	$9: 30$	$10: 05$	$10: 15$	$10: 50$
3	$10: 00$	$10: 25$	$10: 45$	$11: 20$
	$10: 30$	$11: 05$	$11: 15$	$11: 50$
1	$11: 00$	$11: 35$	$11: 45$	$12: 20$

$$
x=\text { from depot }
$$

Timetable and Vehicle Block Development

Veh \#	Depart A	Arrive B	Depart B	Arrive A
1	$x-->6: 00$	$6: 40$	$6: 50$	$7: 30--->$
2	$x-->6: 20$	$7: 00$	$7: 10$	$7: 50$
3	$x-->6: 40$	$7: 20$	$7: 30$	$8: 10$
4	$x-->7: 00$	$7: 40$	$7: 50$	$8: 30$
5	$x->7: 20$	$8: 00$	$8: 10$	$8: 50$
1	$7: 40$	$8: 20$	$8: 30$	$9: 10$
2	$8: 00$	$8: 40$	$8: 50$	$9: 30-->y$
3	$8: 20$	$9: 00$	$9: 15$	$9: 50$
4	$8: 40$	$9: 20->y$		
5	$9: 00$	$9: 35$	$9: 45$	$10: 20$
1	$9: 30$	$10: 05$	$10: 15$	$10: 50$
3	$10: 00$	$10: 25$	$10: 45$	$11: 20$
5	$10: 30$	$11: 05$	$11: 15$	$11: 50$
1	$11: 00$	$11: 35$	$11: 45$	$12: 20$

$$
x=\text { from depot }
$$

Example: Vehicle Blocks

Block 1: Depot - A (6:00) - B (6:50) - A (7:40) - B (8:30) - A (9:30) B (10:15) - A (11:00) - B (11:45) - ...

Block 2: Depot - A (6:20) - B (7:10) - A (8:00) - B (8:50) - Depot

Block 3: Depot - A (6:40) - B (7:30) - A (8:20) - B (9:15) - A (10:00) B (10:45) - . .

Block 4: Depot - A (7:00) - B (7:50) - A (8:40) - Depot

Block 5: Depot - A (7:20) - B (8:10) - A (9:00) - B (9:45) - A (10:30) B (11:15) - ...

Vehicle Scheduling Model Approaches

Heuristic approaches:

1. Define compatible trips at same terminal k such that trips i and j are compatible iff :

$$
\begin{aligned}
& t_{s j}-t_{\mathrm{e} i}>M_{k} \\
& t_{s j}-t_{\mathrm{e} i}<2 D_{k}
\end{aligned}
$$

where $\quad t_{s j}=$ starting time for trip j
$t_{\mathrm{e}_{j}}=$ ending time for trip \boldsymbol{i}
$M_{k}=$ minimum recovery/layover time at terminal \boldsymbol{k}
$D_{k}=$ deadhead time from terminal k to depot

Vehicle Scheduling Model Approaches

2. Apply Restricted First-in-First-out rules at each terminal
(a) Order arrivals and departures at the terminal chronologically
(b) Start with (next) earliest arrival at terminal; if none, go to step (e)
(c) Link to earliest compatible trip departure; if none, return vehicle to depot and return to step (b)
(d) Check vehicle block length against constraint: if constraining, return vehicle to depot and return to step (b); otherwise return to step (c) with new trip arrival time
(e) Serve all remaining unlinked departures from depot

Time-Space Network Representation

Route $1---------------->$ Route \mathbf{N}

Time-Space Network Representation

Time-Space Network Representation

Route 1 --------------->> Route N

Time Space Network Representation Detail

$\left(I_{i j}, u_{i j}, c_{i j}\right) \quad$ (minimum flow, maximum flow, cost per unit of flow)
\bigcirc correspond to revenue trips
..................... deadhead trip to or from the depot or between routes, or layovers between revenue trips on same route

Minimum Cost Network Flow Formulation

$$
\begin{aligned}
& \operatorname{Minimize} \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \text { s.t. }
\end{aligned}
$$

