INTEGER PROGRAMMING

1.224J/ESD.204J TRANSPORTATION OPERATIONS, PLANNING AND CONTROL: CARRIER SYSTEMS

Professor Cynthia Barnhart Professor Nigel H.M. Wilson

Fall 2003

IP OVERVIEW

Sources:

-Introduction to linear optimization (Bertsimas, Tsitsiklis)- Chap 1

- Slides 1.224 Fall 2000

Outline

- When to use Integer Programming (IP)
- Binary Choices
 - Example: Warehouse Location
 - Example: Warehouse Location 2
- Restricted range of values
- Guidelines for strong formulation
- Set Partitioning models
- Solving the IP
 - Linear Programming relaxation
 - Branch-and bound
 - Example

When to use IP Formulation?

- IP (Integer Programming) vs. MIP (Mixed Integer Programming)
 - Binary integer program
- Greater modeling power than LP
- Allows to model:
 - Binary choices
 - Forcing constraints
 - Restricted range of values
 - Piecewise linear cost functions

Example: Warehouse Location

A company is considering opening warehouses in four cities: New York, Los Angeles, Chicago, and Atlanta. Each warehouse <u>can ship 100 units per week</u>. The weekly <u>fixed cost</u> of keeping each warehouse open is \$400 for New York, \$500 for LA, \$300 for Chicago, and \$150 for Atlanta. Region 1 <u>requires 80</u> units per week, region 2 requires 70 units per week, and Region 3 requires 40 units per week. The shipping costs are shown below.

Formulate the problem <u>to meet weekly demand at</u> <u>minimum cost</u>.

From/To	Region 1	Region 2	Region 3
New York	20	40	50
Los Angeles	48	15	26
Chicago	26	35	18
Atlanta	24	50	35

12/31/2003

Warehouse Location- Approach

- What are the decision variables?
 - Variables to represent whether or not to open a given warehouse (y_i=0 or 1)
 - Variables to track flows between warehouses and regions: x_{ij}
- What is the objective function?
 - Minimize (fixed costs+shipping costs)
- What are the constraints?
 - Constraint on flow out of each warehouse
 - Constraint on demand at each region
 - Constraint ensuring that flow out of a closed warehouse is 0.

Warehouse Location-Formulation

- Let y_i be the binary variable representing whether we open a warehouse *i* (y_i=1) or not (y_i=0).
- x_{ij} represents the flow from warehouse *i* to region *j*
- c_i = weekly cost of operating warehouse *i*
- t_{ij} = unit transportation cost from *i* to *j*
- W = the set of warehouses; R = the set of regions

$$MIN(\sum_{i\in W} c_i . y_i + \sum_{i\in W} \sum_{j\in R} t_{ij} . x_{ij})$$

s.t.

$$\sum_{j} x_{ij} \leq 100. y_i, \forall i \in W$$

Forcing constraint

$$\sum_{i} x_{ij} = b_j, \forall j \in R$$

$$x_{ij} \in Z^+, y_i \in \{0,1\}$$

Warehouse Location- Additional Constraints

If the New York warehouse is opened, the LA warehouse must be opened

 $\mathcal{Y}_{NYC} \leq \mathcal{Y}_{LA}$ Relationship constraint

• At most 2 warehouses can be opened

 $\sum_{i} y_{i} \leq 2$ Relationship constraint

• Either Atlanta or LA warehouse must be opened, but not both

 $y_{LA} + y_{ATL} = 1$ Relation

Relationship constraint

12/31/2003

Binary Choices

- Model choice between 2 alternatives (open or closed, chosen or not, etc)
 - Set x=0 or x=1 depending on the chosen alternative
- Can model fixed or set-up costs for a warehouse
- Forcing flow constraints
 - if warehouse is not open, no flow can come out of it
- Can model relationships

Example: Warehouse Location 2

• A company is looking at adding one or more warehouses somewhere in the R regions which they serve. Each warehouse costs c_w per month to operate and can deliver a total of u_w units per month. It costs c_{ii} to transport a unit from the plant in region *i* to the warehouse in region *j*. Furthermore, the delivery costs from a warehouse in region *j* to consumers in region *j* is zero. Warehouses can service other regions, but the company must pay additional transportation costs of \$t per unit per additional region crossed. So to deliver 1 unit from a warehouse in region 2 to a customer in region 4 would cost $(2 \cdot t)$. Note that the cost to transport a good from warehouse 0 to warehouse R is $(R \cdot t)$, not \$t. All units must travel through a warehouse on their way to the customer. Finally, there is a monthly demand for d_i units of the product in region *j*. Formulate the problem to determine where to locate the new warehouses so as to minimize the total cost each month if the plant is located in region p.

Example 2: Approach

- Decision Variables?
 - y_i = whether or not we open a warehouse in region *i*
 - z_{ij} =flow from warehouse *i* to region *j*
 - x_{pj} =flow from plant *p* to warehouse *j*.
- Objective Function?
 - MIN (fixed costs+transportation costs from plant to warehouse+transportation costs from warehouse to region)
- Constraints?
 - balance constraints at each warehouse
 - demand constraints for each region
 - capacity constraints at each warehouse.
- Let a_{ij}=cost of delivering a unit from warehouse *i* to region *j*, a_{ij}=t.|j-i|
- Let c_{pj}=cost of transporting one unit from the plant to warehouse *j*

Example 2: Formulation

$$\begin{split} \text{Min } &\sum_{i \in R} c_w . y_i + \sum_{j \in R} c_{pj} x_{pj} + \sum_{i \in R} \sum_{j \in R} a_{ij} . z_{ij} \\ \text{s.t.} \\ &\sum_{i \in R} z_{ij} = d_j, \forall j \in R \\ &\sum_{j \in R} z_{ij} - x_{pi} = 0, \forall i \in R \\ &x_{pi} \leq u_w y_i, \forall i \in R \\ &x_{ij}, z_{ij} \in Z^+ \forall i, j \in R; y_i \in \{0,1\} \forall i \in R \end{split}$$

12/31/2003

Example 2: Additional Constraints

• At most 3 warehouses can be opened

$$\sum_{i \in R} y_i \leq 3$$

• If you open a warehouse in some region r_{w1} or r_{w2} , you must also open a warehouse in region r_{w3}

$$y_{rw3} \ge y_{rw1}$$

yrw1	yrw2	yrw3
1	0 -	▶ 1
0	1	1
1	1	1
0	0	0 or 1

$$y_{rw3} \ge y_{rw2}$$

Example 2: Additional Constraints

- A plant costs \$c_p per month to operate and can output u_p units per month. In this case, a plant can deliver directly to customers in its region at no additional cost, however it cannot deliver directly to customers in other regions; all units traveling out of the plant's region must pass through a warehouse before their delivery to the customer. Formulate the problem to find the optimal distribution of plants and warehouses.
- Additional decision variables:
 - w_i= whether or not we open a plant in region *i*
 - u_i = amount of flow directly from plant *i* to region *i* (no cost)
- Objective Function
 - Additional term to account for the cost of the plants
- Revised constraints
 - Constraints range over all regions, not only region p
 - Add direct flow from plant to customers in same region
 - Add constraint that total flow leaving a plant is less than u_p

12/31/2003

Example 2: Network Representation 2

Example 2: Formulation 2

$$MIN\sum_{i\in R} c_{w}.y_{i} + \sum_{i\in R} c_{p}.w_{i} + \sum_{i\in R} \sum_{j\in R} c_{ij}.x_{ij} + \sum_{i\in R} \sum_{j\in R} a_{ij}.z_{ij}$$

$$\sum_{i \in R} z_{ij} + u_j = d_j, \forall j \in R$$
$$\sum_{j \in R} z_{ij} - \sum_{j \in R} x_{ji} = 0, \forall i \in R$$
$$\sum_{j \in R} x_{ji} \le u_w.y_i, \forall i \in R$$
$$\sum_{j \in R} x_{ij} + u_i \le u_p.w_i, \forall i \in R$$

$$u_i, x_{ij}, z_{ij} \in Z^+ \forall i, j \in R; w_i, y_i \in \{0,1\} \forall i \in R$$

12/31/2003

Restricted range of values

- Restrict a variable x to take values in a set $\{a_1, ..., a_m\}$
- Introduce *m* binary variables y_j, j=1..m and the constraints

$$X = \sum_{j=1..m} a_j y_j$$

s.t.

$$\sum_{j=1..m} y_j = 1$$
$$y_j \in \{0,1\}, \forall j$$

Guidelines for strong formulation

- Good formulation in LP: small number of variables (n) and constraints (m), because computational complexity of problem grows polynomially in n and m
- LP: choice of a formulation is important but does not critically affect ability to solve the problem
- IP: Choice of formulation is crucial!
- Example: aggregation of demand (Warehouse)

Set Partitioning models

- Very easy to write, often very hard to solve
- All rules, even non-linear, impractical rules can be respected
- Every object is in exactly one set
- Huge number of variables (all feasible combinations)

Linear Programming relaxation

- Relax the integrality constraint
- Examples:
 - X_{i} in Z⁺ becomes $X_{i} \ge 0$
 - X_j in $\{0,1\}$ becomes $0 \le X_j \le 1$
- If an optimal solution to the relaxation is feasible for the MIP (i.e., X take on integer values in the optimal solution of the relaxation) => it is also the optimal solution to the MIP
- The LP relaxation provides a lower bound on the solution of the IP
- Good formulations provide a "tight" bound on the IP

12/31/2003

Branch-and-Bounds: A solution approach for binary Integer programs

- Branch-and-bound is a smart enumeration strategy:
 - With branching, all possible solutions are enumerated (e.g. 2^{number of binary variables})
 - With bounding, only a (usually) small subset of possible solutions are evaluated before a provably optimal solution is found

Branch-and-Bound Algorithm

Beginning with root node (minimization):

- Bound:
 - Solve the current LP with this and all restrictions along the (back) path to the root node enforced
- Prune
 - If optimal LP value is greater than or equal to the incumbent solution => Prune
 - If LP is infeasible => Prune
 - If LP is integral => Prune
- Branch
 - Set some variable to an integer value
- Repeat until all nodes pruned 12/31/2003 Barnhart 1.224J

Example

Company XYZ produces products A, B, C and D. In order to manufacture these products, Company XYZ needs:

	А	В	С	D	
Profit	2	1.8	1.82	1.9	Availability
Nails	10	8	9	10	30
Screws	5	6	4	4	15
Glue	1.1	1.1	0.9	1	3.5

- Company XYZ wants to know which products it should manufacture.
- Let X_P = 1 if product P is manufactured, 0 otherwise

Solving the LP

<i>ё</i> OPL Studio - [noname.mo]	_ 문 ×		
🛛 🚱 Eile Edit <u>Vi</u> ew Project	Execution Debug Options Window Help	<u>_ 리× </u>		
🖄 🇞 & & 🖓 🕼 🕼	▲ 🍐 🏂 🖨 🦪 🕼 🖾 🖄 😤 🐘 🙂 🛞			
📑 🔁 🗗 (P 🛛 🌭 🎾				
A×	<pre>constraint cst[13];</pre>	×		
exple_solving.mod exple_solving_slack.m exple_solving_newvar exple_modcost.mod	<pre>/* Enter coefficients*/ float+ A[13,14]= [[10, 8,9,10], [5,6,4,4],[1.1,1. float C[14]=[-2,-1.8,-1.82,-1.9]; float+ b[13]=[30, 15,3.5]; /* Define variable as a positive float*/ var float+ X[14]; /*var int X[12] in 01;*/ minimize sum(j in 14) C[j]*X[j] subject to{ forall (i in 13) cst[i]: sum(j in 14) A[i,j]*X[j] <=b[i]; forall (j in 14) X[j]<=1; }; display (j in 14) X[j]; display (j in 14) X[j].rc; /* display reduced costs display (i in 13) cst[i].dual; /*display dual value</pre>	*/ 5*/		
		_		
<u>¶a M</u> odel <u>P</u> rojects	4	× F		
▼ Optimal Solution X[1] = 1.0000 X[2] = 0.5714 X[3] = 1.0000 X[4] = 0.6428 ◀	with Objective Value: -6.0700	▲ ▼ ▶		
Console Solutions Optimization Log Solver CPLEX				
Next solution?	Ln 17, Col 28	Waiting		
🏽 🎆 Start 🛛 🚮 🍪 🖏	» @w @jp @jp @jp #0 @js @j]Y] المراجع		

Branch-and-Bound

