Introduction to Transportation Systems

PART III:

TRAVELER TRANSPORTATION

Chapter 27:

Deterministic Queuing

Deterministic Queuing Applied to Traffic Lights

- Here we introduce the concept of deterministic queuing at an introductory level and then apply this concept to setting of traffic lights.

Deterministic Queuing

Deterministic Queuing

In the first situation, we consider $\lambda(\mathrm{t})$, the arrival rate, and $\mu(\mathrm{t})$, the departure rate, as deterministic.

Deterministic Arrival and Departure Rates

Deterministic Queuing

Queuing Diagram

Another Case

- Now, the numbers were selected to make this simple; at the end of four hours the system is empty. The queue dissipated exactly at the end of four hours. But for example, suppose vehicles arrive at the rate of 1,250 /hour from $t=3$ to $t=4$.

Another Queuing Diagram

Cumulative
Arrivals

CLASS DISCUSSION

- What is the longest queue in this system?
-What is the longest individual waiting time?

Computing Total Delay

Area Between Input and Output Curves

Choosing Capacity

$$
\begin{aligned}
& \mu(t)=2000 \\
& \mu(t)=1500 \\
& \mu(t)=500
\end{aligned}
$$

CLASS DISCUSSION

A Traffic Light as a Deterministic Queue

Service Rate and Arrival Rate at Traffic Light

Queuing Diagram per Traffic Light

Queue Stability

All the traffic must be dissipated during the green cycle.

$$
\begin{aligned}
& \text { If } R+G=C \text { (the cycle time), } \\
& \text { then } \lambda\left(R+t_{0}\right)=\mu t_{0} \text {. } \\
& \text { Rearranging } t_{0}=\frac{\lambda R}{\mu-\lambda}
\end{aligned}
$$

If we define $\frac{\lambda}{\mu}=\rho$ (the "traffic intensity"),
Then $t_{0}=\frac{\rho R}{1-\rho}$
For stability $t_{0} \leq G=C-R$.

Delay at a Traffic Signal -Considering One Direction

$$
D=\frac{\lambda R^{2}}{2(1-\rho)}
$$

The total delay per cycle is d

$$
d=\frac{D}{\lambda C}=\frac{R^{2}}{2 C(1-\rho)}
$$

Two Direction Analysis of Traffic Light

Flows in East-West and North-South Directions

Figure 27.7

$$
\begin{aligned}
& D_{1}=\frac{\lambda_{1} R_{1}{ }^{2}}{2\left(1-\rho_{1}\right)} \\
& \text { where } \rho_{1}=\frac{\lambda_{1}}{\mu}
\end{aligned}
$$

We can write similar expressions for D_{2}, D_{3}, D_{4}. We want to minimize D_{T}, the total delay, where

$$
D_{T}=D_{1}+D_{2}+D_{3}+D_{4}
$$

Choosing an Optimum

Remembering that

$$
\begin{aligned}
& R_{2}=R_{1} \\
& R_{4}=R_{3}=\left(C-R_{1}\right)
\end{aligned}
$$

we want to minimize D_{T} where

$$
D_{T}=\frac{\lambda_{1} R_{1}{ }^{2}}{2\left(1-\rho_{1}\right)}+\frac{\lambda_{2} R_{1}{ }^{2}}{2\left(1-\rho_{2}\right)}+\frac{\lambda_{3}\left(C-R_{1}\right)^{2}}{2\left(1-\rho_{3}\right)}+\frac{\lambda_{4}\left(C-R_{1}\right)^{2}}{2\left(1-\rho_{4}\right)}
$$

To obtain the optimal R_{1}, we differentiate the expression for total delay with respect to R_{1} (the only unknown) and set that equal to zero.

$$
\frac{d D_{T}}{d R_{1}}=\frac{\lambda_{1} R_{1}}{1-\rho_{1}}+\frac{\lambda_{2} R_{1}}{1-\rho_{2}}-\frac{\lambda_{3}\left(C-R_{1}\right)}{1-\rho_{3}}-\frac{\lambda_{4}\left(C-R_{1}\right)}{1-\rho_{4}}=0
$$

Try a Special Case

$$
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}
$$

Therefore, $\rho_{1}=\rho_{2}=\rho_{3}=\rho_{4}$.
The result, then, is

$$
R_{1}=\frac{C}{2}, R_{3}=\frac{C}{2}
$$

This makes sense. If the flows are equal, we would expect the optimal design choice is to split the cycle in half in the two directions.

The text goes through some further mathematical derivations of other cases for the interested student.

