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Deterministic Queuing
Applied to Traffic Lights 

� Here we introduce the concept of 
deterministic queuing at an 
introductory level and then apply 
this concept to setting of traffic 
lights. 
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Deterministic Queuing 

Deterministic Queuing 

In the first situation, we consider λ(t), the arrival 
rate, and µ(t), the departure rate, as 
deterministic. 

Deterministic Arrival and Departure Rates
λ(t) µ(t) 
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Deterministic Queuing


Deterministic Arrival and Departure Rates 
(continued) 
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Queuing Diagram
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Another Case 

� Now, the numbers were selected 
to make this simple; at the end of 
four hours the system is empty. 
The queue dissipated exactly at 
the end of four hours. But for 
example, suppose vehicles arrive 
at the rate of 1,250/hour from t=3 
to t=4. 
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Another Queuing Diagram
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CLASS DISCUSSION 
� What is the longest queue in this system? 
� What is the longest individual waiting time? 

Figure 27.3 
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Computing Total Delay 
Area Between Input and Output Curves 
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Choosing Capacity 

µ (t) = 2000 
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CLASS DISCUSSION 
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A Traffic Light as a
Deterministic Queue 

Service Rate and Arrival Rate at Traffic Light 
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Queuing Diagram per Traffic
Light 
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Queue Stability 

All the traffic must be dissipated during the
green cycle. 
If R + G = C (the cycle time), 

then λ(R + t0) = µt0. 

Rearranging t0 = λR 
µ - λ 

If we define λ = ρ (the “traffic intensity”), 
µ 

Then t0 = ρR 
1 - ρ 

For stability t0 ≤ G = C - R . 
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Delay at a Traffic Signal --

Considering One Direction


D = λR2 

2(1 - ρ) 

The total delay per cycle is d 

d = D = R2 

λC 2C(1 - ρ) 
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Two Direction Analysis of
Traffic Light 

Flows in East-West and North-South Directions 
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D1 = λ1R1
2 

2(1 - ρ1) 

where ρ = λ1 1 
µ 

We can write similar expressions for 
D2, D3 , D4. We want to minimize 
DT , the total delay, where 

DT = D1 + D2 + D3 + D4
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Choosing an Optimum 
Remembering that 

R2 = R1 

R4 = R3 = (C - R1) 

we want to minimize DT where 

DT = λ1R1
2 λ2R1

2 λ3(C-R1)2 λ4(C-R1)2 

2(1 - ρ1) 
+ 2(1 - ρ2) 

+ 2(1 - ρ3) 
+ 2(1 - ρ4) 

To obtain the optimal R1, we differentiate the 
expression for total delay with respect to R1 (the
only unknown) and set that equal to zero. 

dDT λ1R1 λ2R1 λ3(C-R1) λ4(C-R1) = 0= - -
dR1 1 - ρ1
+ 1 - ρ2 1 - ρ3 1 - ρ4 
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Try a Special Case 

λ1 = λ2 = λ3 = λ4 

Therefore, ρ1 = ρ2 = ρ3 = ρ4. 

The result, then, is 

R1 = C , R3 = C 
2 2 

This makes sense. If the flows are equal, we would
expect the optimal design choice is to split the
cycle in half in the two directions. 
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� The text goes through some further 

mathematical derivations of other 

cases for the interested student.
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