Introduction to Transportation Systems

PART II:

FREIGHT TRANSPORTATION

Chapter 15:

Railroad Terminals:

P-MAKE Analysis to Predict Network Performance

Terminals

Terminal performance is a major determinant of network performance.

Terminal Performance: Another Look

Performance includes a measure of cost -- if one is measuring terminal performance not only on throughput of the terminal but also on the resources used -- robustness may involve a more conservative use of resources. It may involve having redundancy in the system.

LOS and Routing over the Rail Network

Level-of-service in rail freight operations is a function of the number of intermediate terminals at which a particular shipment is handled.

- Empirical research shows the major determinant of the LOS is not the distance between origin and destination, but rather the numbers of times the shipment was handled at intermediate terminals, which is really an operating decision on the part of the railroads.

Direct Service

Figure 15.3

Terminal Operations

Classification Yard

A P-MAKE Function

Average Yard Time

Now, average yard time -- $\mathrm{E}(\mathrm{YT})$-- will be a function of the available time (AVAIL) to make that connection. In this model, $\mathrm{E}(\mathrm{YT})$-- the average yard time -- will have two components -- the time spent in the yard if the connection is made, in which case, with probability P-MAKE, the terminal time is AVAIL. With probability (1-P-MAKE), the car will spend (AVAIL + the time until the next possible train).
$\mathrm{E}(\mathrm{YT})$ = P-MAKE * (AVAIL)

+ (1-P-MAKE) * (AVAIL + time until next possible train)

We can calibrate these curves and calculate an "optimal" AVAIL for the particular terminal.

Origin-Destination Performance

P-MAKE Functions

Another P-MAKE Function

Figure 15.9

Missed
 Connection Probability
 Yard Time (for AVAIL $=8$
 for both yards)

0
[f(AVAIL)] ${ }^{2}$
16

$1 \quad$	$2 \mathrm{f}(\mathrm{AVAIL}) *$
$\mathrm{f}(\mathrm{AVAIL})]$	

$2 \quad[1-\mathrm{f}(\mathrm{AVAIL})]^{2} \quad 64$

Total Yard Time as a f(Avail)

Probability

Probability

$$
\begin{aligned}
\mathrm{f}(\mathrm{AVAIL})= & \mathrm{P}-\mathrm{MAKE}=0.9 \\
& \text { Average O-D Time }=56.8 \\
& \text { Variance O-D Time }=103.7
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}(\mathrm{AVAIL})= & \mathrm{P}-\mathrm{MAKE}=0.8 \\
& \text { Average O-D Time }=61.6 \\
& \text { Variance O-D Time }=184.3
\end{aligned}
$$

Figure 15.10

Available Yard Time

More Frequent Trains (1)

More Frequent Trains (2)

- So, by having trains run twice a day, the average yard time and variance of yard time goes down. This system is a more expensive system, but provides a better level-of-service. This is the classic cost/LOS trade-off [Key Point 14].

Bypassing Yards

Total Yard Time with Bypassing One Yard

