Class Exercise \#11

You are an 18.02 machine. You can take partial derivatives without knowing anything other than how to mathematically interpret the symbols. Given the two continuous functions;

$$
\begin{gathered}
g(x, \quad)=\frac{V(x)}{2 I} \cdot\left[\left(\frac{h}{2}\right)^{2}-y^{2}\right] \\
f(x, y)=-\frac{M(x) \cdot y}{I}
\end{gathered}
$$

where $V(x)$ and $M(x)$ are continuous functions of x related by and I are constants,

$$
\frac{d}{d \mathrm{x}} \mathrm{M}(\mathrm{x})=-\mathrm{V}(\mathrm{x}) \text { and where } h
$$

Show that:

$$
\frac{\partial}{\partial \mathrm{x}} \mathrm{f}(\mathrm{x}, \mathrm{y})+\frac{\partial}{\partial \mathrm{y}} \mathrm{~g}(\mathrm{x}, \quad)=0
$$

