
1.050 Engineering Mechanics I 

Summary of variables/concepts 

Lecture 16-26 
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Variable Definition Notes & comments 

Define undeformed position 

Deformed position 

Displacement vector 

X 
r Position vector, underformed 

configuration Note: Distinction between 
capital “X” and small “x” 

x r Position vector, deformed 
configuration 

ξ 
r 

Xx 
rvr 

−=ξ Displacement vector 

jiij eF eF rr 
⊗= 

Grad( )1Grad( ) ξ 
rr 

+== xF 

j 

i 
ij x 

xF 
∂ 

∂ 
= 

F dXdx 
vr 

⋅= 

Deformation gradient tensor 
Relates position vector of 
undeformed configuration with 
deformed configuration 

Lectures 16 and 17: Introduction to deformation and strain 
Key concepts: Undeformed and deformed configuration, displacement vector, the 
transformation between the undeformed and deformed configuration is described by 
the deformation gradient tensor 
Derivation first for general case of large deformation 
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Variable Definition 
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dΩJ = d = det F

dΩ0


r Tnda = J ( )F 
−1 
⋅ N
r 
dA 

2 2E = F T F −1 Ld − L0 = dX 
r 
⋅ (F T F − 1)⋅ dX 

r 
= dX 

r 
⋅ 2E ⋅ dX 

r 

λα =
∆Lα 2Eαα +1 −1

L0,α


2Eαβsinθ = α ,β (1+ λα )(1+ λβ ) 

r 
Grad ξ << 1 

1 r r T
ε = (gradξ + (gradξ ) )

ε 2 

ε = 
1 ⎜
⎛ ∂ξi + 

∂ξ j ⎟
⎞ 

ij 2 ⎜⎝ ∂x j ∂xi 
⎟
⎠ 

Notes & comments 

J = Jacobian volume change 

Surface change (area & normal) 

Definition of strain tensor 

Relative length variation in the 
α-direction 

Angle change between two 
vectors 

Small deformation strain tensor


For Cartesian coordinate system


Lecture 18: How to calculate change of geometry (angle, volume, length..) 
Small deformation theory:  The small deformation theory is valid for small 
deformations only; for this case the equations simplify. These concepts are most 
important for the remainder of 1.050. 
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Variable Definition Notes & comments 

αβαββα εγθ =) =,(
2 

1 ee rr 

ααα ελ ) =(e r nnn 
rr 

r ⋅⋅= ελ 

nmm n 
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Angle change 

Dilatation 

Volume change 

Surface change 

IIε 

nE n rrr 
⋅= ε( ) (strain vector) 

“The” Mohr circle 

Mohr circle of strain tensor 

Lecture 18: Small deformation - Mohr circle for strain tensor.  Any strain tensor can 
be represented in the Mohr plane;  this way, one can display a 3D tensor quantity in 
a 2D projection.  All concepts are the same as for the stress tensor Mohr plane.  
The quantities on the x/y-axes are dilatations and angle change (shear).  
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Variable Definition Notes & comments 

δW Work done by external forces 

dψ Free energy change 

Wd δψ = 

Non-dissipative deformation= 
elastic deformation 

All work done on system 
stored in free energy 

Defines thermodynamics of 
elastic deformation 

j 
j 

i 
i 

ddx 
x 

ξ
ξ 
ψψ 
∂ 

∂ 
= 

∂ 

∂ 

ji ddx ∀ ξ∀ , 
Solution approach 1D truss systems 

klijklij c εσ = 

εσ = c : 
Link between stress and 
strain 

Also called “generalized 
Hooke’s law” 

Lectures 20 and 21: Elasticity, basic definitions.  The most important concept of 
this lecture is that elastic deformation is a thermodynamic process under which no 
energy dissipation occurs. This concept can be generally applied to characterize 
any elasticity problem. We derived elasticity for 1D systems (including solution 
strategy), and then generalized it to 3D.  This led to the link between stress and 
strain. 
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Variable Definition Notes & comments 

Isotropic elasticity Elastic properties of material 
do NOT depend on direction 

Isotropic elasticity described 
uniquely by 2 parameters, K 
and G 

ε ( ) ∑∑== 
i j 

ij 
T 2 

2 

1:
2 

1 εε εε “Length” of a tensor 

tr(ε ) ( )  
0 

0 
332211:1tr 

Ω 

Ω − Ω 
=++== 

d 
dd dεεεεε “Volume change” of a tensor 

),( dv εΨ ε 22 

2 
1 

2 
1 

dv GK εε +Ψ = 

Free energy due to volume 
strain and shear strain 

(assumption, mathematical 
model to describe elastic 
behavior of isotropic solids) 

( ) εεεεεεσ GGKGGK v 21 
3 

221 
3 

2 
332211 +++⎟ 

⎠ 
⎞

⎜ 
⎝ 
⎛ −=+⎟ 

⎠ 
⎞

⎜ 
⎝ 
⎛ −= 

Linear isotropic elasticity 

Tensor notation 

Lecture 22: Isotropic elasticity, basic concepts.   The most important equation on 
this slide is the one on the bottom, for linear isotropic elasticity.  Note that isotropic 
elasticity is fully characterized by two constants, K and G. These two parameters 
have physical meaning;  K describes how the free energy changes under volume 
changes, and G describes how the free energy changes under shear (shape) 
changes. 
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Variable Definition 

σ11 = ⎜
⎛ K − 

2 G ⎟
⎞(ε11 + ε22 + ε33 )+ 2Gε11


⎝ 3 ⎠


σ 22 = ⎜
⎛ K − 

2 G ⎟⎞(ε11 + ε22 + ε33 )+ 2Gε22

⎝ 3 ⎠


σ 33 = ⎜
⎛ K − 

2 G ⎟⎞(ε11 + ε22 + ε33 )+ 2Gε33

⎝ 3 ⎠


σ12 = 2Gε12


σ 23 = 2Gε23


σ13 = 2Gε13


σ11 = ⎜
⎛ K + 

4 G ⎟⎞ε11 + ⎜
⎛ K − 

2 G ⎟⎞ε 22 + ⎜
⎛ K − 

2 G ⎟⎞ε 33

⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠


σ 22 = ⎜
⎛ K − 

2 G ⎟⎞ε11 + ⎜
⎛ K + 

4 G ⎟⎞ε 22 + ⎜
⎛ K − 

2 G ⎟⎞ε33

⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠


σ 33 = ⎜
⎛ K − 

2 G ⎟⎞ε11 + ⎜
⎛ K − 

2 G ⎟⎞ε 22 + ⎜
⎛ K + 

4 G ⎟⎞ε33

⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠


σ12 = 2Gε12


σ 23 = 2Gε 23


σ13 = 2Gε13


Notes & comments 

Linear isotropic elasticity 

Written out for individual 
stress tensor coefficients 

Linear isotropic elasticity 

Written out for individual 
stress tensor coefficients, 
collect terms that multiply 
strain tensor coefficients 

4
c1111 = c2222 = c3333 = K + G
3

2
c1122 = c1133 = c2233 = K − G 
3


c1212 = c2323 = c1313 = 2G 

Lecture 22: Isotropic elasticity, equations that relate stress and strain. Here we 
summarize the equations in different forms.  On the bottom, right, you see how to 
calculate the elasticity tensor coefficients from K and G. 
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Overview: 3D linear elasticity 

0div =+ g rρσ 

)(xrσStress tensor 

Basis: Physical laws 
(Newton’s laws) 

BCs on boundary of domain Ω 
nnT d 

T d 

rrr 
r ⋅=Ω∂ σ)(: 

:Ω nnT rrr 
⋅= σ)( 

jiij σσ = 

)(xrεStrain tensor 

Basis: Geometry 

BCs on boundary of domain Ω 
ξξ

ξ 

rr 
r =Ω∂ d 

d : 
Linear deformation theory 

1Grad <<ξ 
r 

( )( )T
ξξε 
rr 

gradgrad
2 

1 
+=

S
ta

tic
al

ly
 a

dm
is

si
bl

e 
(S

.A
.)

K
in

em
at

ic
al

ly
 a

dm
is

si
bl

e 
(K

.A
.) 

Elasticity 

εσ :c= klijklij c εσ = εεσ GGK v 21 
3 
2 

+⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ −= 

Basis: Thermodynamics 

Isotropic solid 

⎟
⎟ 
⎠ 

⎞ 
⎜
⎜ 
⎝ 

⎛ 

∂ 

∂ 
+ 

∂ 

∂ 
= 

i 

j 

j 

i 
ij xx 

ξξε 
2 

1 

Summary, 3D linear elasticity.  This page may be useful to keep an overview over 
the methods and approaches covered here.  This summary is valid for any linear 
elasticity problem. 
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Variable Definition 

•	 Step 1: Write down BCs (stress BCs and 
displacement BCs), analyze the problem to 
be solved (read carefully!) 

•	 Step 2: Write governing equations for 
stress tensor, strain tensor, and constitutive 
equations that link stress and strain, simplify 
expressions 

•	 Step 3: Solve governing equations (e.g. by 
integration), typically results in expression 
with unknown integration constants 

•	 Step 4: Apply BCs (determine integration 
constants) 

Notes & comments 

Solution procedure to solve 
3D elasticity problems 

Lecture 23: Solution approach, 3D isotropic elasticity problems.  This is a 4-step 
solution procedure that guides you through the process.  
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Variable Definition Notes & comments 

xxε 

zyxxxx 
00 ϑεε += 

2 

02 
0 

dx 
d z 

y 
ξϑ = − Curvature 

z
dx 

d 
dx 

d zx 
xx 2 

020 ξξε −= 

dx 
d x 

xx 

0 
0 ξε = Strain 

Navier-Bernouilli beam 
model; strain distribution in 
beam section 

z 

x 
F Uniaxial beam deformation 

ν GK 
GK 

+ 

− 
= 

3 

23 

2 

1ν 

xxzzyy νεεε = −= 

Poisson’s ratio (lateral 
contraction under uniaxial 
tension) 

E GK 
KGE 
+ 

= 
3 

9 

xxxx Eεσ = 

Young’s modulus (relates 
stresses and strains under 
uniaxial tension) 

Lecture 19 and 24: Beam deformation and beam elasticity.  Here we only review 
the beam bending case for 2D systems. Beam elasticity is a special case of 3D 
elasticity, adapted for the particular (stretched) geometry of beams. This slide also 
reviews the introduction of Young’s modulus E and Poisson’s ratio.  Both can be 
calculated from K and G. 
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Variable Definition Notes & comments 

S = ∫ 
S 

dSS Cross-sectional area 

I = ∫ 
S 

z dSI 2 Second order area moment 

EI y 
z 

y EI
dx 

dEIM ϑξ 
== − 2 

02 Beam bending stiffness 
(relates bending moment and 
curvature) 

ES 
f 

dx 
d xx = −2 

02ξ Governing differential 
equation, axial forces 

EI 
f 

dx 
d zz = 4 

04ξ Governing differential 
equation, shear forces 

• Step 1: Write down BCs (stress BCs and
displacement BCs), analyze the problem to be
solved (read carefully!) 

• Step 2: Write governing equations for 
• Step 3: Solve governing equations (e.g. by

integration), results in expression with unknown
integration constants 

• Step 4: Apply BCs (determine integration
constants) 

..., xz ξξ Solution procedure to solve 
beam elasticity problems 

Lecture 25: Beam elasticity, cont’d.  Note the two differential equations for axial 
load/displacement and shear load/displacement in the z-direction.  This slide also 
summarizes the 4-step approach to solve beam problems. 
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Variable Definition 
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d 4ξz f z d 4ξ= z EI = f
dx4 EI dx4 z 

d 3ξz Qz d 3ξz= − − EI = Q
dx3 EI dx3 z 

d 2ξ 
2 
z = − 

M y − 
d 2ξ 

2 
z EI = M ydx EI dx 

dξz = −ω − 
dξz =ω

dx y dx y 

ξz ξz 

x 
d 2ξ 

2 
x 
0 

= − 
f x − ES d 2ξ 

2

0 

= f xdx ES dx 

dξx 
0 

= ε 0 

dx xx 

ξ 0 
x 

Notes & comments 

Shear force density 

Shear force 

Bending moment 

Rotation (angle) 

Displacement 

Axial force density (e.g. gravity) 

Axial strain 

Axial displacement 

Lecture 25: Beam elasticity, governing equations for both beam bending and beam 
stretching. This slide reviews the physical meaning of the different derivatives.  
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Variable Definition 

f (x) 

f ' (x) = 0 

f ' ' (x) < 0 

f ' ' (x) > 0 

f ' ' (x) = 0 

function of x 

necessary condition for 
min/max 

local maximum 
local minimum 

inflection point 

• Start from 	 f z = EIξz 
''''  ,  then work your way up… 
ξ '''' ~ f 

+ → −• Note sign changes: z z 

ξz 
''' ~ −Qz 

ξ '' ~ −Mz y 

ξ ' ~ −ωz y 
−→ +

ξ ~ ξz z 

• At each level of derivative, first plot extreme cases at ends of 
beam 
• Then consider zeros of higher derivatives;  determine points of 
local min/max 
• ξz represents physical shape of the beam (“beam line”) 

Notes & comments 

How to find 
min/max of 
functions 

Drawing/sketching 
approach 

Lecture 26:  Drawing of beam problems.  Note the sign changes, as indicated. The 
approach is based on the concept of considering min/max values of the functions;  
since all physical quantities are derivates of one another, this approach can be 
easily applied to plot the solution. 
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Variable Definition Notes & comments 

Example 

'2 
3 

2 ~ 
16 

5 

68 

1)( zy lxx xl
EI 
px ξω −⎟⎟ 

⎠ 

⎞ 
⎜⎜
⎝ 

⎛ 
−+= 

'''~ 
8 

5)( zz lxpxQ ξ−⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ −= 

'' 
2 

2 ~ 
8 

5 

28 

1)( zy lxxlpxM ξ−⎟⎟
⎠ 

⎞ 
⎜⎜
⎝ 

⎛ 
−+= 

⎟⎟
⎠ 

⎞ 
⎜⎜
⎝ 

⎛ 
−+−= 3 

4 
22 

48 

5 

2416 

1)( lxx xl
EI 
pxzξ 

'''' ~)( zz pxf ξ−= 

x 

z 
p = force/length 

l length 

EI 

Lecture 26: Example. Remember to clearly indicate the coordinate system when 
you draw beam elasticity solutions. 
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Variable Definition 

Free end r 
F = 0 ξ = 0zr 
M = 0 M = 0y 

Concentrated force 
ξ = 0xQz = −P 
ω = 0y 

P 

ng)diHinge (ben r 
ξ = 0M = 0y 
ω = 0y 

σ xx (z; x) = E⎛⎜⎜
N (x) 

+ 
M y (x) 

z ⎞⎟⎟ = 
N (x) 

+ 
M y (x) 

z 
⎝ ES EI ⎠ S I 

Notes & comments 

Commin beam 
boundary conditions 

Stress distribution within 
cross-section 

Lecture 26: Common boundary conditions in beam problems, plotting of stress 
distribution within cross-section. 
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