## Lecture 19 - summary

Displacement vector

- $\vec{\xi} = \vec{\xi}^0 + \vec{\xi}^S$
- Strain tensor  $\underline{\underline{\varepsilon}} = \underline{\underline{\varepsilon}}^0 + \underline{\underline{\varepsilon}}^s$

Decomposition into beam reference axis and section

From displacement in beam reference axis,  $\vec{\xi}^0(x)$ :

 $\epsilon_{xx}^{0} = \frac{\partial \xi_{x}^{0}}{\partial x}; \ \epsilon_{xy}^{0} = \frac{1}{2} \frac{\partial \xi_{y}^{0}}{\partial x}; \ \epsilon_{xz}^{0} = \frac{1}{2} \frac{\partial \xi_{z}^{0}}{\partial x}$ 

## Navier-Bernoulli assumption (N-B):

An initially plane beam section which is perpendicular to the beam reference axis remains plane throughout the beam deformation and perpendicular to the beam's axis in the deformed configuration.

1<sup>st</sup> consequence (section remains plane):

$$\vec{\xi}^{s} = \vec{\omega}(x) \times \vec{X}_{s}(y, z)$$

2<sup>nd</sup> consequence: (remains perpendicular)

$$\omega_z = 2\epsilon_{xy}^0 = \frac{\partial \xi_y^0}{\partial x}; \ -\omega_y = 2\epsilon_{xz}^0 = \frac{\partial \xi_z^0}{\partial x}$$



**Total displacement and strain tensor coefficients:** 

$$\vec{\xi} = \vec{\xi}^0 + \vec{\omega}(x) \times \vec{X}_s(y, z) \qquad \varepsilon_{xx} = \varepsilon_{xx}^0 + \omega_y z - \omega_z y \qquad \varepsilon_{xy} = \varepsilon_{xy}^0 - \frac{1}{2}\omega_z - \frac{1}{2}\omega_x z \qquad \varepsilon_{xz} = \varepsilon_{xz}^0 + \frac{1}{2}\omega_y + \frac{1}{2}\omega_y y$$

