Lecture 19 - summary

Displacement vector

$$
\vec{\xi}=\vec{\xi}^{0}+\vec{\xi}^{s}
$$

Strain tensor

$$
\underline{\underline{\varepsilon}}=\underline{\underline{\varepsilon^{0}}}+\underline{\underline{\varepsilon^{s}}}
$$

Decomposition into beam reference axis and section
From displacement in beam reference axis, $\vec{\xi}^{0}(x)$:

$$
\epsilon_{x x x}^{0}=\frac{\partial \xi_{x}^{0}}{\partial x} ; \epsilon_{x y}^{0}=\frac{1}{2} \frac{\partial \xi_{y}^{0}}{\partial x} ; \epsilon_{x z}^{0}=\frac{1}{2} \frac{\partial \xi_{z}^{0}}{\partial x}
$$

Navier-Bernoulli assumption ($\mathrm{N}-\mathrm{B}$):

An initially plane beam section which is perpendicular to the beam reference axis remains plane throughout the beam deformation and perpendicular to the beam's axis in the deformed configuration.

$1^{\text {st }}$ consequence (section remains plane):

$$
\vec{\xi}^{s}=\vec{\omega}(x) \times \vec{X}_{s}(y, z)
$$

$2^{\text {nd }}$ consequence:
(remains perpendicular)

$$
\omega_{z}=2 \epsilon_{x y}^{0}=\frac{\partial \xi_{y}^{0}}{\partial x} ;-\omega_{y}=2 \epsilon_{x z}^{0}=\frac{\partial \xi_{z}^{0}}{\partial x}
$$

Total displacement and strain tensor coefficients:
$\vec{\xi}=\vec{\xi}^{0}+\vec{\omega}(x) \times \vec{X}_{s}(y, z) \quad \varepsilon_{x x}=\varepsilon_{x x}^{0}+\omega_{y}^{\prime} z-\omega_{z}^{\prime} y \quad \varepsilon_{x y}=\varepsilon_{x y}^{0}-\frac{1}{2} \omega_{z}-\frac{1}{2} \omega_{x}^{\prime} z \quad \varepsilon_{x z}=\varepsilon_{x z}^{0}+\frac{1}{2} \omega_{y}+\frac{1}{2} \omega_{x}^{\prime} y$

