Lecture 18 - summary

Topic: Linear deformation theory
Linear: $\mid \operatorname{Grad} \vec{\xi} \| \ll 1 \Rightarrow \operatorname{Grad}(.) \simeq \operatorname{grad}($. Key assumption: Small deformation
Small strain tensor $\quad \underline{\underline{\varepsilon}}=\frac{1}{2}\left(\operatorname{grad} \vec{\xi}+(\operatorname{grad} \vec{\xi})^{T}\right)$

Distortion

$$
\frac{1}{2} \theta\left(\vec{e}_{\alpha}, \vec{e}_{\beta}\right)=\theta_{\alpha \beta}=\varepsilon_{\alpha \beta} \quad \frac{1}{2} \theta_{\vec{m}, \vec{n}}=\vec{m} \cdot \underline{\underline{\varepsilon}} \cdot \vec{n} \quad \text { (general) }
$$

Dilatation

$$
\begin{equation*}
\lambda\left(\vec{e}_{\alpha}\right)=\varepsilon_{\alpha \alpha} \tag{general}
\end{equation*}
$$

$$
\lambda_{\vec{n}}=\vec{n} \cdot \underline{\underline{\varepsilon}} \cdot \vec{n}
$$

Volume change

$$
J-1=\frac{d \Omega_{t}-d \Omega_{0}}{d \Omega_{0}} \simeq \operatorname{tr} \varepsilon=\lambda\left(\vec{e}_{1}\right)+\lambda\left(\vec{e}_{3}\right)+\lambda\left(\vec{e}_{3}\right)
$$

Surface change

$$
\vec{n} d a \simeq(1+\operatorname{tr} \varepsilon)\left(1-(\operatorname{grad} \vec{\xi})^{T}\right) \cdot \vec{N} d A
$$

Strain Mohr circles $\vec{E}(\vec{n})=\underline{\underline{\varepsilon}} \cdot \vec{n} \quad$ (strain vector)

$$
\vec{E}(\vec{n})=\lambda \vec{n}+\gamma \vec{t}\left\{\begin{array}{l}
\lambda=\vec{n} \cdot \vec{E}(\vec{n})=\frac{\epsilon_{I}+\epsilon_{I I I}}{2}+\frac{\epsilon_{I}-\epsilon_{I I I}}{2} \cos 2 \vartheta \\
\gamma=\vec{t} \cdot \vec{E}(\vec{n})=\frac{\epsilon_{I}-\epsilon_{I I I}}{2} \sin (-2 \vartheta)
\end{array}\right.
$$

Concept: Decompose deformation into dilatation λ and distortion γ (3 Mohr circles for general $\underline{\underline{\varepsilon}}$)

