Lecture 17 - summary

Topic: How to describe deformation (cont'd from lecture 16)
Goal is to develop a mathematical language to describe deformation
Topics covered:
1.) Review and example - deformation gradient tensor (main tool)

Deformation gradient:

$$
\left(F_{i j}\right)=\left[\begin{array}{lll}
\beta & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2.) Applications to:
2.1 Volume change $J=\frac{d \Omega_{d}}{d \Omega_{0}}=\operatorname{det} \underline{\underline{F}} \quad J=$ Jacobian
2.2 Surface normal / surface area change $\quad \vec{n} d a=J\left(\underline{\underline{F}}^{T}\right)^{-1} \cdot \vec{N} d A$
2.3 Length change $\quad L_{d}^{2}-L_{0}^{2}=d \vec{X} \cdot\left(\underline{\underline{F^{T}}} \underline{\underline{F}}-\underline{\underline{1}}\right) \cdot d \vec{X}=d \vec{X} \cdot 2 \underline{\underline{E}} \cdot d \vec{X} \quad \underline{\underline{E}}=\underline{\underline{F}}^{T} \underline{\underline{F}}-\underline{\underline{\underline{1}}}$ Strain tensor

$$
\lambda_{\alpha}=\frac{\Delta L_{\alpha}}{L_{0, \alpha}} \sqrt{2 E_{\alpha \alpha}+1}-1 \quad \begin{aligned}
& \text { relative length variation in } \\
& \text { the } \alpha \text {-direction }
\end{aligned}
$$

2.4 Angle change

$$
\sin \theta_{\alpha, \beta}=\frac{2 E_{\alpha \beta}}{\left(1+\lambda_{\alpha}\right)\left(1+\lambda_{\beta}\right)}
$$

