1.050 Engineering Mechanics

Lecture 4: Stresses and Strength Stresses and Equilibrium Discrete Model

1.050 – Content overview

I. Dimensional analysis

- 1. On monsters, mice and mushrooms
- 2. Similarity relations: Important engineering tools

II. Stresses and strength

- 2. Stresses and equilibrium
- 3. Strength models (how to design structures, foundations.. against mechanical failure)

III. Deformation and strain

- 4. How strain gages work?
- 5. How to measure deformation in a 3D structure/material?

IV. Elasticity

- 5. Elasticity model link stresses and deformation
- 6. Variational methods in elasticity

V. How things fail – and how to avoid it

- 7. Elastic instabilities
- 8. Plasticity (permanent deformation)
- 9. Fracture mechanics

Lectures 1-3 Sept.

Lectures 4-15 Sept./Oct.

Lectures 16-19 Oct.

Lectures 20-31 Nov.

Lectures 32-37 Dec.

1.050 – Content overview

I. Dimensional analysis

II. Stresses and strength

Lecture 4: Newton's laws, fall of the WTC towers Lecture 5: Stress vector and stress tensor Lecture 6: Hydrostatic problem Lecture 7: Soil mechanics / geostatics problem Lecture 8: Beam stress model Lecture 9: Beam model II and summary Lecture 10: Strength models

III. Deformation and strain

IV. Elasticity

V. How things fail – and how to avoid it

Content lecture 5

1. 3-scale continuum model: Molecular scale, representative volume element (REV), macro-scale

2. Stress vector, stress matrix and stress tensor

- Definition of stress vector
- Generalized expression as stress matrix
- Definition of stress tensor
- 3. Implement dynamic resultant theorem for REV
 - Use Gauss theorem (divergence theorem)
 - Develop differential equilibrium: Partial differential equation