

1.050 - Content overview

I. Dimensional analysis
II. Stresses and strength
III. Deformation and strain
IV. Elasticity
V. How things fail - and how to avoid it

Lecture 33 (Mon): Buckling (loss of convexity)
Lecture 34 (Wed): Fracture mechanics
Lecture 35 (Fri - teaching evaluation): Fracture mechanics II
Lecture 36 (Mon): Plastic yield
Lecture 37 (Wed): Wrap-up plastic yield and closure

1.050 - Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms Lectures 1-3
2. Similarity relations: Important engineering tools Sept

II. Stresses and strength

3. Stresses and equilibrium
4. Strength models (how to design structures, foundations.. against mechanical failure) Sept./Oct.
III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D Lectures 16-19 structure/material?
IV. Elasticity
7. Elasticity model - link stresses and deformation

Lectures 20-32 Oct./Nov.
V. How things fail - and how to avoid it
10. Fracture mechanics

Lectures 33-37
11. Plasticity (permanent deformation) Dec.

Example: Concrete column w/ circular cross-section

Equation provides critical buckling load: Force must be below this load to avoid failure

$$
P<P_{\text {crit }}=\frac{\pi^{2} E I}{(2 l)^{2}}
$$

$$
E I=\frac{E \pi d^{4}}{64} \quad \text { Circular cross-section }
$$

$$
P_{\text {crit }}=194 \mathrm{kN}
$$

Recall - lecture 33

Analyzed buckling instability (displacement convergence at point where load is applied) using two approaches:

- (i) iterative solution using conventional small deformation beam theory (divergence of series)
\square
- (ii) application of large-deformation beam theory (nonexistence of solution since determinant of coefficient matrix is zero - bifurcation point)
-
- (iii) instability is equivalent to loss of convexity (energy approach)

Express potential energy for large deformation beam theory

Goal: Show that elastic instability corresponds to a loss of convexity

$$
\begin{aligned}
\varepsilon_{p o t}=\varepsilon_{p o t}(& \left.\vartheta_{y},{\underset{\sim}{y}}_{\omega}^{\omega}\right) \\
& \text { New term } \\
& \text { large-deformation beam theory }
\end{aligned}
$$

Note: Potential energy in large-deformation beam theory depends also on rotation (because rotations create moments)

Calculation of potential energy

$$
\varepsilon_{p o t}\left(\vartheta_{y}, \omega_{y}\right)=\int_{l} \frac{1}{2}\left(E I \vartheta_{y}^{2}+F_{x} \omega_{y}^{2}\right) d X-W\left(\vec{\xi}^{0}, \omega_{y}\right)_{8}
$$

Express potential energy for large deformation beam theory

$$
\varepsilon_{p o t}\left(\vartheta_{y}, \omega_{y}\right)=\int_{l} \frac{1}{2}\left(E I \vartheta_{y}^{2}+F_{x} \omega_{y}^{2}\right) d X-W\left(\vec{\xi}^{0}, \omega_{y}\right)
$$

Now express potential energy as function of parameter δ :

$$
\varepsilon_{p o t}=\frac{1}{2} \delta^{2} \int_{l}\left(E I\left(\frac{d^{2} f}{d x^{2}}\right)^{2}-P\left(\frac{d f}{d x}\right)^{2}\right) d X-P \frac{\Delta}{l} \delta
$$

Express potential energy for large deformation beam theory

Assume K.A. displacement field: $\quad \xi_{Z}^{\prime}(X)=\bigoplus_{\text {Parameter }}^{\delta} f(X / \ell)$
$f(X / l)$ must satisfy BCs...: $X=0:\left\{\begin{array}{l}\xi_{Z}^{\prime}=0 \quad \\ \frac{d \xi_{Z}^{\prime}}{d X}=0\end{array} \quad \Rightarrow \frac{d f}{d X}(0)=0\right.$ $f\left(\frac{X}{\ell}\right)=3\left(\frac{1}{2}\left(\frac{X}{\ell}\right)^{2}-\frac{1}{6}\left(\frac{X}{\ell}\right)^{3}\right)$

10

Express potential energy for large deformation beam theory

Necessary condition for minimum of potential energy:

$$
\frac{\partial \varepsilon_{p o t}}{\partial \delta}=\delta \int_{l}\left(E I\left(\frac{d^{2} f}{d x^{2}}\right)^{2}-P\left(\frac{d f}{d x}\right)^{2}\right) d X-P \frac{\Delta}{l} \stackrel{!}{=} 0
$$

Also, the expression of $\varepsilon_{p o t}$ must be convex!
Convexity: $\quad \frac{\partial^{2} \varepsilon_{p o t}}{\partial \delta^{2}}>0 \quad \begin{aligned} & \text { Loss of convexity: } \\ & \varepsilon_{p o t}\end{aligned} \frac{\partial^{2} \varepsilon_{p o t}}{\partial \delta^{2}} \leq 0$
$\underbrace{\varepsilon_{\text {pot }}}$
$\rightarrow \delta$

Express potential energy for large deformation beam theory

Loss of convexity: $\quad \frac{\partial^{2} \varepsilon_{p o t}}{\partial \delta^{2}} \leq 0$

$$
\frac{\partial^{2} \varepsilon_{p o t}}{\partial \delta^{2}}=\int_{l}\left(E I\left(\frac{d^{2} f}{d x^{2}}\right)^{2}-P\left(\frac{d f}{d x}\right)^{2}\right) d X
$$

Instability occurs if...
$P \geq \frac{\int_{i}\left(E I\left(\frac{d^{2} f}{d x^{2}}\right)^{2}\right) d X}{\int_{I}\left(\frac{d f}{d x}\right)^{2} d X}=P_{\text {crit }}=E I_{z z} \frac{\int_{0}^{\ell}\left(3 \frac{\ell-X}{\ell^{3}}\right)^{2} d X}{\int_{0}^{\ell}\left(\frac{3}{2} X \frac{2 \ell-X}{\ell^{3}}\right)^{2} d X}=2.5 \frac{E I_{z z}}{\ell^{2}}$

Express potential energy for large deformation beam theory

Notes:

- Critical load obtained from potential energy approach yields upper bound of actual critical buckling load
- Iterations with first order displacement field leads to identical series expansion as in the iterative approach with small deformation beam theory

Approximate solution:

$$
P_{c r i t}=2.5 \frac{E I}{l^{2}}
$$

Actual solution:

$$
>\quad P_{\text {crit }}=\frac{\pi^{2}}{4} \frac{E I}{l^{2}}=2.4674 \frac{E I}{l^{2}}
$$

Summary

Analyzed buckling instability (displacement convergence at point where load is applied) using two approaches:

- (i) iterative solution using conventional small deformation beam theory (divergence of series)
- (ii) application of large-deformation beam theory (nonexistence of solution since determinant of coefficient matrix is zero-bifurcation point) I
- (iii) instability is equivalent to loss of convexity (energy approach)

Fracture mechanics

How brittle materials fail "crack extension"

Brittle fracture
Brittle fracture = typically uncontrolled response of a structure, often leading to
sudden malfunction of entire system
Images removed due to copyright restrictions: Photograph of fault line,
World Trade Center towers, shattered wine glass,
X-ray of broken bone.

Brittle failure - crack extension

Images removed due to copyright restrictions.

Snapshots show microscopic processes as a crack extends.
During crack propagation, elastic energy stored in the material is dissipated 18 by breaking atomic bonds

