
1.050 – Content overview 
I. Dimensional analysis 

1.	 On monsters, mice and mushrooms Lectures 1-3

1.050 Engineering Mechanics I 2. Similarity relations: Important engineering tools Sept. 

II. Stresses and strength 
3.	 Stresses and equilibrium Lectures 4-15
4.	 Strength models (how to design structures,

foundations.. against mechanical failure) Sept./Oct. 
Lecture 32 

III. Deformation and strain

Energy bounds in beam structures (cont’d) - 5. How strain gages work?


How to solve problems	 6. How to measure deformation in a 3D Lectures 16-19 
structure/material? Oct. 

IV. Elasticity 
7.	 Elasticity model – link stresses and deformation Lectures 20-32
8.	 Variational methods in elasticity Oct./Nov. 

V.  How things fail – and how to avoid it 
9.	 Elastic instabilities 
10.	 Plasticity (permanent deformation) Lectures 33-37 

1	 211.	 Fracture mechanics Dec. 

1.050 – Content overview	 Review: 3D isotropic elasticity 
I. Dimensional analysis ⎧max(− εcom(σ ' ))⎫ 
II. Stresses and strength	 σ ' S.A. r 
III. Deformation and strain	 −εcom(σ ' ) ≤ ⎨

⎪⎪ is equal to ⎬
⎪⎪ ≤ εpot (ξ ' ) 

IV. Elasticity	
σ ' S.A. ⎪ 

rmin εpot (ξ 
r 
' ) ⎪ ξ 

r 
' K.A. 

… ⎪⎩ ξ ' K.A. ⎪⎭
Lecture 27: Introduction: Energy bounds in linear elasticity (1D system) 
Lecture 28: Introduction: Energy bounds in linear elasticity (1D system), cont’d 
Lecture 29: 1D examples Lower bound Solution Upper bound 
Lecture 30: Generalization to 3D Complementary energy Potential energyLecture 31: Energy bounds in beam structures 
Lecture 32: Energy bounds in beam structures (cont’d): How to solve problems approach approach 

V. 	How things fail – and how to avoid it r 
Lecture 33 (Mon): Buckling (loss of convexity) ε (σ ' ) =ψ *(σ ' ) − W *(T ' )
Lecture 34 (Wed): Fracture mechanics I (and surprise!) com 

Lecture 35 (Fri): Fracture mechanics II r r 
Lecture 36 (Mon):  Plastic yield ε pot (ξ ' ) =ψ (ε ' ) − W (ξ ' )
Lecture 37 (Wed): Wrap-up plastic yield and closure 3 4 
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Beam structures (2D) 
Complementary free energy 

ψ * = ⎢
⎡1 N 2 

+
1 M y 

2 

⎥
⎤
dx∫ 2 ES 2 EI x=0..l ⎣ ⎦ 

Free energy 

⎡1 0 2 1 0 2 ⎤ψ = ES( )  ( ) dx∫ ⎢ ε xx + EI ϑy ⎥
x=0..l ⎣2 2 ⎦ 

Note: For 2D, the only contributions are axial forces & moments and 
axial strains and curvatures (general 3D case see manuscript page 
263 and following) 5 

Clapeyron’s formulas 


ψ =ψ * = 
1 (W * +W )
2 

ε pot = 
1 (W * −W )
2 

ε com = 
1 (W −W * )
2 

Significance: Calculate solution potential/complementary 
energy (“target”) from BCs 

Beam structures 

External work by prescribed displacements 

* 
r

d	
r 

d d d dW = ∑[ξ (xi ) ⋅ R +ωy (xi )M y ,R ]= ∑[ξ x (xi )Rx + ξ z (xi )Rz +ωy (xi )M y ,R ] 
i i 

External work by prescribed force densities/forces/moments 
r r r r

0 d 0 d dW = ∫ξ ⋅ f	 (x)dx +∑[ξ ⋅ F (xi ) +ω y M y (xi )] 
x=0..l i 

0 d 0 d 0 d 0 d d= ∫ [ξ x f x (xi ) + ξ z f z (xi )]dx +∑[ξ x Fx (xi ) + ξ z Fz (xi ) +ω y M y (xi )] 
x=0..l i 
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Beam elasticity 


⎧ max (− ε (F 
r 

', M ' ))⎫ 
N ',M y ' S.A. com S y 

− εcom(F 
r 

S ', M y ' ) ≤ ⎨
⎪⎪ is equal to ⎬

⎪⎪ ≤ ε pot (r ξ 
r 
' ,ωy ' ) 

N ',M y 'S.A.	 ⎪
⎪ min ε (ξ 

v 
' ,ω ' ) ⎪

⎪ 
ξ 'K.A. 

⎩ ξ 
r 
' K.A. pot y ⎭ 

Lower bound Solution Upper bound 
r 

Complementary energy FS' , M y ' Potential energy 
approach that provide approach 
“Stress approach” absolute max “Displacement 

of − ε com approach) 
rWork with unknown but ξ ' ,ωy ' S.A. moments and Work with unknown 

forces that provide 
but K.A. displacementsabsolute min 	 8 

of ε pot 
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Step-by-step solution approach	 Example 
Use complementary energy approach! 

•	 Step 1: Express target solution (Clapeyron’s formulas) – calculate
complementary energy AT solution P 

•	 Step 2: Determine reaction forces and reaction moments 

•	 Step 3: Determine force and moment distribution, as a function of reaction 
forces and reaction moments (need My and N) l/2 δ l/2 

•	 Step 4: Express complementary energy as function of reaction forces and δ = unknown displacement at point of 
reaction moments (integrate) load application 

•	 Step 5: Minimize complementary energy (take partial derivatives w.r.t. all Structure is statically indeterminate to degree 1
unknown reaction forces and reaction moments and set to zero); result: set of 
unknown reaction forces and moments that minimize the complementary energy Can not be solved by relying on static equilibrium only (too many 

unknown forces, ‘hyperstatic’).
•	 Step 6: Calculate complementary energy at the minimum (based on resulting

forces and moments obtained in step 5) 

•	 Step 7: Make comparison with target solution = find solution displacement 9 Goal: Solve problem using complementary energy approach 

Example	 Example 
Step 1: Target solution ε = 

1 Pδ	 Step 3: Determine force and moment distribution Concept of 
com 2 (as a function of hyperstatic force R’):	 superposition often 

helpful 
Step 2: Determine hyperstatic forces and moments (here: R’) 

⎧ Pl 2x x P 
M y (x) = 

⎪
⎨ 2 

(1 − 
l 

) − R' l(1 − 
l 
) 0 ≤ x ≤ l / 2 

P	 ⎩
⎪ − R' l(1 − 

x
l 
) l / 2 < x ≤ l M y (x) + 

Note: Only need expression for N and My R’ 
l/2 l/2	 M (x)y 

Hyperstatic force ⎣2 ES 2 EI 

11 ε com (R' ) = 
1 ⎛

⎜⎜
l 3 

R'2 − 
5 l 3 R' P + 

1 l 3P2 ⎞
⎟⎟ 12 

δ	 Step 4: Express complementary energy 
2N 

=0 

W 

=0 
No contributionR’ 

ε com =ψ * − W * = ∫ 
⎡
⎢ 
1 

+ 
1 M y 

2 ⎤
⎥dx − * from prescribed 

displacementsx=0..l ⎦ 

2EI ⎝ 3 24 24 ⎠ 
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Example 
Step 5: Find min of ε (R' ) 

∂ε com (R' ) 

com 

= 0 
∂R' 

1 ⎛ 2l 3 R' 5 ⎞ 
⎜⎜ − l 3 P⎟⎟ = 0 

2EI ⎝ 3 24 ⎠ 

5R' = P 
16 

Step 6: Minimum complementary energy 

ε com (R' = 
5 P) = 

7 l 3 P 
16 1536EI 
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Example 
Step 7: Compare with target solution 

ε com = 
1 Pδ ≤ ε com (R' = 

5 P) = 
7 l 3P 

2 16 1536EI 
7 3δ ≤ l P

768EI 

δ = 
7 l 3P represents a minimum of the complementary energy 

768EI 

Is it a global minimum, that is, the solution? 

1. My’ is S.A. 
2. R’	 is the only hyperstatic reaction force (in other words, the only


source of additional moments)

3. Therefore, the minimum is actually a global minimum, and therefore, it 

is the solution 14 

Generalization (important) 
•	 For any homogeneous beam problem, the minimization 

of the complementary energy with respect to all 
hyperstatic forces and moments 

X i = {Ri , M y ,R;i } 
yields the solution of the linear elastic beam problem: 

∂
∂ 

Xi 

(εcom( Xi )) = ! 0 

1 *(W − W ) ≡ minε ( X )
2 Xi 

com i 

15 
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