

1.050 - Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms Lectures 1-3
2. Similarity relations: Important engineering tools Sept.
II. Stresses and strength
3. Stresses and equilibrium
4. Strength models (how to design structures, foundations.. against mechanical failure) Sept./Oct.
III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D Lectures 16-19 structure/material?
IV. Elasticity
7. Elasticity model - link stresses and deformation

Lectures 20-31 Oct./Nov.
V. How things fail - and how to avoid it 9. Elastic instabilities
10. Plasticity (permanent deformation) Lectures 32-37
11. Fracture mechanics Dec.

1.050 - Content overview

I. Dimensional analysis
II. Stresses and strength
III. Deformation and strain
IV. Elasticity

Lecture 23: Applications and examples
Lecture 24: Beam elasticity
Lecture 25: Applications and examples (beam elasticity)
Lecture 26: ... cont'd and closure
Lecture 27: Introduction: Energy bounds in linear elasticity (1D system)
Lecture 28: Introduction: Energy bounds in linear elasticity (1D system), cont'd
Lecture 29: 1D examples
Lecture 30: Generalization to 3D
...
V. How things fail - and how to avoid it

Lectures 32 to 37

Example system: 1D truss structure

Minimum potential energy approach

$$
\varepsilon_{\mathrm{pot}}\left(\delta_{i}, \xi_{0}\right)=\psi\left(\delta_{i}\right)-P \xi_{0} \leq \psi\left(\delta_{i}^{\prime}\right)-P \xi_{0}^{\prime}=\varepsilon_{\mathrm{pot}}\left(\delta_{i}^{\prime}, \xi_{0}^{\prime}\right)
$$

Potential energy of actual solution is always smaller than the solution to any other displacement field
Therefore, the actual solution realizes a minimum of the potential energy:

$$
\varepsilon_{\mathrm{pot}}\left(\delta_{i}, \xi_{i}\right)=\min _{\delta_{i}^{\prime} \text { K.A. }} \varepsilon_{\mathrm{pot}}\left(\delta_{i}^{\prime}, \xi_{i}^{\prime}\right)
$$

To find a solution, minimize the potential energy for a selected choice of kinematically admissible displacement fields
We have not invoked the EQ conditions!

Minimum complementary energy approach

Conditions for statically
admissible (S.A.)
Consider two statically admissible force fields

Minimum complementary energy approach
$\varepsilon_{\text {com }}\left(N_{i}, R\right)=\psi^{*}\left(N_{i}\right)-\xi_{0}^{d} R \leq \psi^{*}\left(N_{i}^{\prime}\right)-\xi_{0}^{d} R^{\prime}=\varepsilon_{\text {com }}\left(N_{i}^{\prime}, R^{\prime}\right)$
Complementary energy of actual solution is always smaller than the solution to any other displacement field Therefore, the actual solution realizes a minimum of the complementary energy:
$\qquad \varepsilon_{\text {com }}\left(N_{i}, R\right)=\min _{N_{i}^{\prime} \text { S.A. }} \varepsilon_{\text {com }}\left(N_{i}^{\prime}, R^{\prime}\right)$
To find a solution, minimize the complementary energy for a selected
choice of statically admissible force fields
We have not invoked the kinematics of the problem!

We have not invoked the kinematics of the problem!

Minimum complementary energy approach

Combine: Upper/lower bound

$$
\begin{gathered}
-\varepsilon_{\text {com }}\left(N_{i}^{\prime}, R^{\prime}\right) \leq\left\{\begin{array}{c}
\max _{N_{i} \mathrm{~S} . \mathrm{A} .}\left(-\varepsilon_{\mathrm{com}}\left(N_{i}^{\prime}, R^{\prime}\right)\right) \\
\text { is equal to } \\
\min _{\delta_{i} \mathrm{K.A.}} \varepsilon_{\text {pot }}\left(\delta_{i}^{\prime}, \xi_{i}^{\prime}\right)
\end{array}\right\} \leq \varepsilon_{\mathrm{pot}}\left(\delta_{i}^{\prime}, \xi_{i}^{\prime}\right) \\
\text { Lower bound }
\end{gathered}
$$

$$
\begin{aligned}
& \varepsilon_{\mathrm{com}}= \frac{11}{48 k} P^{2} \longrightarrow-\varepsilon_{\mathrm{com}}=-\frac{11}{48 k} P^{2} \\
& \varepsilon_{\mathrm{pot}}\left(\xi_{0}, \delta_{1}\right)=-\frac{11}{48 k} P^{2}
\end{aligned}
$$

At the solution to the elasticity problem, the upper and lower bound coincide

Step-by-step approach

- Step 1: Determine K.A. displacement field (for approximation, find appropriate assumed displacement field)
- Step 2: Express work balance - find $\varepsilon_{\text {pot }} / \varepsilon_{\text {com }}$
- Step 3: Find min of $\varepsilon_{\text {pot }} / \varepsilon_{\text {com }}$
- Step 4: Determine displacement field, forces etc.
- Solution is approximation to actual solution

Minimum potential energy approach
Step 1: Assume K.A. displacement field

$$
\xi_{z}(x ; \alpha, \beta)=\beta+\alpha\left(\frac{x}{3 L}\right)^{2}
$$

(approximation of the actual solution...)

Minimum potential energy approach

Displacement of the four truss members

$$
\text { (*) }^{*}\left\{\begin{array}{l}
\delta_{1}=\xi_{z}(x=0)=\beta \\
\delta_{2}=\xi_{z}(x=L)=\beta+\frac{\alpha}{9} \\
\delta_{3}=\xi_{z}(x=2 L)=\beta+\frac{4}{9} \alpha \\
\delta_{4}=\xi_{z}(x=3 L)=\beta+\alpha \\
\xi_{0}=\delta_{4}
\end{array}\right.
$$

Minimum potential energy approach

Step 2:

Total free energy of a beam:
Page 215 in manuscript (chapter 5)

$$
\psi_{B}=\int_{x=0}^{3 L} \int_{z=-h / 2}^{h / 2} \int_{y=-b / 2}^{b / 2} \frac{1}{2} E\left(\varepsilon_{x x}^{0}+\vartheta_{y}^{0} z\right)^{2} d y d z d x
$$

$$
\text { with: } \varepsilon_{x x}^{0}=0 \quad \text { (no displacement in the } x \text {-direction) }
$$

$$
\vartheta_{y}^{0}=-\frac{\partial^{2} \xi_{z}}{\partial x^{2}}=-\frac{2 \alpha}{9 L^{2}} \quad \text { (curvature can be calculated from }
$$

$$
\psi_{B}=\frac{E}{2} \frac{4 \alpha^{2}}{81 L^{4}} \int_{x=0}^{3 L} \int_{z=-h / 2}^{h / 2} \int_{y=-b / 2}^{b / 2} z^{2} d y d z d x \quad \psi_{B}(\alpha, \beta)=\underbrace{\frac{b h^{3} E}{162 L^{3}}}_{\text {"spring constant" }} \alpha^{2}
$$

$$
\psi_{B}(\alpha)=\frac{1}{2} k_{B} \alpha^{2}
$$

Total free energy:

$$
\begin{aligned}
& \psi(\alpha, \beta)=\psi_{B}(\alpha)+\sum_{i=1.4} \psi_{i}(\alpha, \beta) \\
& \psi(\alpha, \beta)=\frac{1}{2} k_{B} \alpha^{2}+\frac{1}{2} k\left(\beta^{2}+\left(\beta+\frac{\alpha}{9}\right)^{2}+\left(\beta+\frac{4 \alpha}{9}\right)^{2}+(\beta+\alpha)^{2}\right)
\end{aligned}
$$

External work

$$
W=F(\alpha+\beta)
$$

Minimum potential energy approach

$\varepsilon_{\mathrm{pot}}(\alpha, \beta)=\frac{1}{2} k_{B} \alpha^{2}+\frac{1}{2} k\left(\beta^{2}+\left(\beta+\frac{\alpha}{9}\right)^{2}+\left(\beta+\frac{4 \alpha}{9}\right)^{2}+(\beta+\alpha)^{2}\right)-F(\beta+\alpha)$
Step 3: $\min _{\alpha, \beta}\left(\varepsilon_{\mathrm{pot}}(\alpha, \beta)\right)$

How to find minimum of this function?
Take partial derivatives, and set each to zero

Minimum potential energy approach

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha}\left(\frac{1}{2} k_{B} \alpha^{2}+\frac{1}{2} k\left(\beta^{2}+\left(\beta+\frac{\alpha}{9}\right)^{2}+\left(\beta+\frac{4 \alpha}{9}\right)^{2}+(\beta+\alpha)^{2}\right)-F(\beta+\alpha)\right)=0 \\
& \frac{\partial}{\partial \beta}\left(\frac{1}{2} k_{B} \alpha^{2}+\frac{1}{2} k\left(\beta^{2}+\left(\beta+\frac{\alpha}{9}\right)^{2}+\left(\beta+\frac{4 \alpha}{9}\right)^{2}+(\beta+\alpha)^{2}\right)-F(\beta+\alpha)\right)=0
\end{aligned}
$$

Results in a system of linear equations:

$$
\left(\begin{array}{cc}
k_{B}+\frac{98}{81} k & \frac{14}{9} k \\
\frac{14}{9} k & 4 k
\end{array}\right)\binom{\alpha}{\beta}=\binom{F}{F}
$$

$$
\binom{\alpha}{\beta}=\left(\begin{array}{cc}
k_{B}+\frac{98}{81} k & \frac{14}{9} k \\
\frac{14}{9} k & 4 k
\end{array}\right)^{-1}\binom{F}{F}
$$

Step 4: Based on solution, determine displacement field δ_{i} (from (*)), then forces: $N_{i}=k \delta_{i}$

$$
\binom{\alpha}{\beta}=\binom{\frac{99 F}{2\left(81 k_{B}+49 k\right)}}{\frac{F\left(81 k_{B}-28 k\right)}{4 k\left(81 k_{B}+49 k\right)}}
$$

