1.050 Engineering Mechanics I

Lecture 27

Introduction: Energy bounds in linear elasticity

1.050 - Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms
2. Similarity relations: Important engineering tools
II. Stresses and strength
3. Stresses and equilibrium
4. Strength models (how to design structures, foundations..against mechanical failure)
III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D structure/material?

Lectures 1-3
Sept.

Lectures 4-15
Sept./Oct.

Lectures 16-19
Oct.
IV. Elasticity
7. Elasticity model - link stresses and deformation
8. Variational methods in elasticity
Lectures 20-31
Oct./Nov.
V. How things fail - and how to avoid it
9. Elastic instabilities
10. Plasticity (permanent deformation)
11. Fracture mechanics
Lectures 32-37
Dec.

1.050 - Content overview

I. Dimensional analysis
II. Stresses and strength
III. Deformation and strain
IV. Elasticity

Lecture 20: Introduction to elasticity (thermodynamics)
Lecture 21: Generalization to 3D continuum elasticity
Lecture 22: Special case: isotropic elasticity
Lecture 23: Applications and examples
Lecture 24: Beam elasticity
Lecture 25: Applications and examples (beam elasticity)
Lecture 26: ... cont'd and closure
Lecture 27: Introduction: Energy bounds in linear elasticity (1D system)
Lecture 28: Introduction: Energy bounds in linear elasticity (1D system),
cont'd
V. How things fail - and how to avoid it

Lectures 32.. 37

Convexity of a function

Example system: 1D truss structure

We will use this example to illustrate all key concepts

Total external work

$$
\begin{array}{ll}
W^{d}=\vec{\xi} \cdot \vec{F}^{d}+\vec{\xi}^{d} \cdot \vec{R} \\
\text { Work done by } & \begin{array}{l}
\text { Work done by } \\
\text { prescribed } \\
\text { forces }
\end{array} \\
\begin{array}{l}
\text { displacements, } \\
\text { displacements } \\
\text { unknown }
\end{array} & \text { force unknown }
\end{array}
$$

Total internal work

Combining it...

$$
W^{d}=\vec{\xi} \cdot \vec{F}^{d}+\vec{\xi}^{d} \cdot \vec{R} \stackrel{!}{=} \psi+\psi^{*}
$$

Quiz II - Monday Nov. 19

- Focus on material presented in lectures 16-26
- Preparation: Problem sets, old quizzes, lecture material
- Deformation and strain, isotropic elasticity, beam deformation (beam bending and beam stretching), forensic beam elasticity, sketch solution of beam problems, concept of superposition (frame structures)

