1.050 Engineering Mechanics I
Lecture 26
Beam elasticity - how to sketch the solution
Another example
Transversal shear in beams
Handout

1.050 - Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms Lectures 1-3
II. Stresses and strength
2. Stresses and equilibrium
3. Strength models (how to design structures, foundations.. against mechanical failure) Sept./Oct.
III. Deformation and strain
4. How strain gages work?
5. How to measure deformation in a 3D structure/material?

IV. Elasticity

7. Elasticity model - link stresses and deformation
V. How things fail - and how to avoid it
8. Elastic instabilities
9. Plasticity (permanent deformation) Lectures 32-37
10. Fracture mechanics Dec.

1.050 - Content overview

I. Dimensional analysis

II. Stresses and strength
III. Deformation and strain
IV. Elasticity

Lecture 20: Introduction to elasticity (thermodynamics)
Lecture 21: Generalization to 3D continuum elasticity
Lecture 22: Special case: isotropic elasticity
Lecture 23: Applications and examples
Lecture 24: Beam elasticity
Lecture 25: Applications and examples (beam elasticity)
Lecture 26: ... cont'd and closure
V. How things fail - and how to avoid it

Drawing approach

- Start from $f_{z}=E I \xi_{z}^{\prime " \prime}$, then work your way up...
- Note sign changes:

$$
\begin{aligned}
& \xi_{z}^{\prime \prime \prime} \sim f_{z} \quad+\rightarrow- \\
& \xi_{z}^{\prime \prime \prime} \sim-Q_{z} \\
& \xi_{z}^{\prime \prime} \sim-M_{y} \\
& \xi_{z}^{\prime} \sim-\omega_{y} \quad-\rightarrow+ \\
& \xi_{z} \sim \xi_{z} \quad \rightarrow-\rightarrow+
\end{aligned}
$$

- At each level of derivative, first plot extreme cases at ends of beam
- Then consider zeros of higher derivatives; determine points of local min/max
- ξ_{z} represents physical shape of the beam ("beam line")

Review: Finding min/max of functions	
	Example
$f(x)$ function of x	$f(x)=x^{2}$
$f^{\prime}(x)=0 \quad \begin{aligned} & \text { necessary condition for } \\ & \text { min/max }\end{aligned}$	$\uparrow \quad f^{\prime}(x)=2 x$
$f^{\prime \prime}(x)<0 \quad$ local maximum	
$f^{\prime \prime}(x)>0$ local minimum	1
$f^{\prime \prime}(x)=0 \quad$ inflection point	
	$f^{\prime \prime}(x)=2$
	5

Example with point load

Step 1: BCs $\quad x=0\left\{\begin{array}{l}\xi_{z}(0)=0 \\ \omega_{y}(0)=0\end{array} \quad x=1 \quad\left\{\begin{array}{l}Q_{z}(l)=-P \\ M_{y}(l)=0\end{array}\right.\right.$

Step 2: Governing equation $\quad \frac{d^{4} \xi_{z}}{d x^{4}}=0$

Example with point load (cont'd)

$$
\text { Step 3: Integrate }\left\{\begin{array}{l}
\xi_{z}^{\prime \prime \prime}=0, \xi_{z}^{\prime \prime \prime}=C_{1}=-\frac{Q_{z}}{E I} \\
\xi_{z}^{\prime \prime}=C_{1} x+C_{2}=-\frac{M_{y}}{E I} \\
\xi_{z}^{\prime}=C_{1} \frac{x^{2}}{2}+C_{2} x+C_{3}=-\omega_{y} \\
\xi_{z}=C_{1} \frac{x^{3}}{6}+C_{2} \frac{x^{2}}{2}+C_{3} x+C_{4}
\end{array}\right.
$$

Step 4: Determine integration constants by applying BCs

$$
\left\{\begin{array}{l}
\xi_{z}(0)=0 \rightarrow C_{4}=0 \quad \omega_{y}=-\xi_{z}^{\prime}(0)=0 \rightarrow C_{3}=0 \\
M_{y}(l)=E I\left(\frac{P}{E I} l+C_{2}\right)=0 \rightarrow C_{2}=-\frac{P l}{E I} \\
Q_{z}(l)=-C_{1} E I=-P \rightarrow C_{1}=\frac{P}{E I}
\end{array}\right.
$$

Example with point load (cont'd)

$$
\left\{\begin{array}{l}
f_{z}=0 \\
Q_{z}=-P \\
M_{y}=P(l-x) \\
\omega_{y}=-\left(\frac{P}{E I} \frac{x^{2}}{2}-\frac{P l}{E I} x\right) \\
\xi_{z}=\frac{P}{E I} \frac{x^{3}}{6}-\frac{P l}{E I} \frac{x^{2}}{2}
\end{array}\right.
$$

Given: Section quantities known as a function of position x
Want: Calculate stress distribution in the section

$$
\begin{gathered}
\sigma_{x x}=E\left(\varepsilon_{x x}^{0}+\vartheta_{y} z\right) \\
\text { with: }\left\{\begin{array}{l}
N=E S \varepsilon_{x x}^{0} \\
M_{y}=E I \vartheta_{y}
\end{array}\right. \\
\sigma_{x x}(z ; x)=E\left(\frac{N(x)}{E S}+\frac{M_{y}(x)}{E I} z\right)=\frac{N(x)}{S}+\frac{M_{y}(x)}{I} z
\end{gathered}
$$

Example: Plotting stress distribution in beam's cross-section

Fixed x :

$$
N>0, M_{y}>0 \quad \sigma_{x x}(z)=\frac{N}{S}+\frac{M_{y}}{I} z
$$

