### 1.050 Engineering Mechanics I

## Lecture 25: <br> Beam elasticity - problem solving technique and examples

Handout

### 1.050 - Content overview

## I. Dimensional analysis

1. On monsters, mice and mushrooms
2. Similarity relations: Important engineering tools
II. Stresses and strength
3. Stresses and equilibrium
4. Strength models (how to design structures, foundations.. against mechanical failure)

Lectures 4-15
Sept./Oct.
III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D

Lectures 16-19 structure/material?

Oct.
IV. Elasticity
7. Elasticity model - link stresses and deformation
8. Variational methods in elasticity

Lectures 20-31
Oct./Nov.
V. How things fail - and how to avoid it
9. Elastic instabilities
10. Plasticity (permanent deformation)

Lectures 32-37
11. Fracture mechanics

Dec.

### 1.050 - Content overview

## I. Dimensional analysis

## II. Stresses and strength

## III. Deformation and strain

## IV. Elasticity

Lecture 20: Introduction to elasticity (thermodynamics)
Lecture 21: Generalization to 3D continuum elasticity
Lecture 22: Special case: isotropic elasticity
Lecture 23: Applications and examples
Lecture 24: Beam elasticity
Lecture 25: Applications and examples (beam elasticity)
Lecture 26: ... cont'd and closure

## V. How things fail - and how to avoid it

## Beam bending elasticity

Governed by this differential equation:

$$
\frac{d^{4} \xi_{z}}{d x^{4}}=\frac{f_{z}}{E I}
$$

Integration provides solution for displacement
Solve integration constants by applying BCs

Note:

$$
\begin{aligned}
& E=\text { material parameter (Young's modulus) } \\
& I=\text { geometry parameter (property of cross-section) } \\
& f_{z}=\text { distributed shear force (force per unit length) } \\
& \quad f_{z}=p b_{0} \text { where } p_{0}=\text { pressure, } b=\text { thickness of beam in } y \text {-direction }
\end{aligned}
$$

## 4-step procedure to solve beam elasticity problems

- Step 1: Write down BCs (stress BCs and displacement BCs), analyze the problem to be solved (read carefully!)
- Step 2: Write governing equations for $\xi_{z}, \xi_{x} \ldots$
- Step 3: Solve governing equations (e.g. by integration), results in expression with unknown integration constants
- Step 4: Apply BCs (determine integration constants)

Note: Very similar procedure as for 3D isotropic elasticity problems Difference in governing equations (simpler for beams)

## Physical meaning of derivatives of $\xi_{z}$

$$
\begin{array}{lll}
\frac{d^{4} \xi_{z}}{d x^{4}}=\frac{f_{z}}{E I} & \frac{d^{4} \xi_{z}}{d x^{4}} E I=f_{z} & \text { Shear force density } \\
\frac{d^{3} \xi_{z}}{d x^{3}}=-\frac{Q_{z}}{E I} & -\frac{d^{3} \xi_{z}}{d x^{3}} E I=Q_{z} & \text { Shear force } \\
\frac{d^{2} \xi_{z}}{d x^{2}}=-\frac{M_{y}}{E I} & -\frac{d^{2} \xi_{z}}{d x^{2}} E I=M_{y} & \text { Bending moment } \\
\frac{d \xi_{z}}{d x}=-\omega_{y} & -\frac{d \xi_{z}}{d x}=\omega_{y} & \text { Rotation (angle) } \\
\xi_{z} & \xi_{z} & \text { Displacement }
\end{array}
$$

## Step-by-step example



Step 1: BCs

$$
\begin{aligned}
& x=0\left\{\begin{array}{l}
\xi_{z}(0)=0 \\
\omega_{y}(0)=0
\end{array}\right. \\
& x=1 \quad\left\{\begin{array}{l}
\xi_{z}(l)=0 \\
M_{y}(0)=0
\end{array}\right.
\end{aligned}
$$

Step 2: Governing equation

$$
\left.\frac{d^{4} \xi_{z}}{d x^{4}}=\frac{f_{z}}{E I} \xrightarrow{\substack{p \text { applied in } \\ \text { negative z- } \\ \text { direction }}} \right\rvert\, \frac{d^{4} \xi_{z}}{d x^{4}}=-\frac{p}{E I}
$$

$$
\text { Step 3: Integration }\left\{\begin{array}{l}
\xi_{z}^{\prime \prime \prime}=-\frac{p}{E I} x+C_{1} \\
\xi_{z}^{\prime " \prime}=-\frac{p}{E I} \rightarrow\left\{\begin{array}{l}
\xi_{z}^{\prime \prime}=-\frac{p}{E I} \frac{x^{2}}{2}+C_{1} x+C_{2} \\
\xi_{z}^{\prime}=-\frac{p}{E I} \frac{x^{3}}{6}+C_{1} \frac{x^{2}}{2}+C_{2} x+C_{3} \\
\xi_{z}=-\frac{p}{E I} \frac{x^{4}}{24}+C_{1} \frac{x^{3}}{6}+C_{2} \frac{x^{2}}{2}+C_{3} x+C_{4}
\end{array}\right.
\end{array}\right.
$$

Step 4: Apply BCs

$$
\left\{\begin{array}{l}
\xi_{z}^{\prime \prime \prime}=-\frac{p}{E I} x+C_{1}=-\frac{Q_{z}}{E I} \\
\xi_{z}^{\prime \prime}=-\frac{p}{E I} \frac{x^{2}}{2}+C_{1} x+C_{2}=-\frac{M_{y}}{E I} \\
\xi_{z}^{\prime}=-\frac{p}{E I} \frac{x^{3}}{6}+C_{1} \frac{x^{2}}{2}+C_{2} x+C_{3}=-\omega_{y} \\
\xi_{z}=-\frac{p}{E I} \frac{x^{4}}{24}+C_{1} \frac{x^{3}}{6}+C_{2} \frac{x^{2}}{2}+C_{3} x+C_{4}
\end{array}\right.
$$

Step 4: Apply BCs (cont'd)

$$
\left.\left.\begin{array}{rl}
\xi_{z}(0)=0 & \rightarrow C_{4}=0 \\
\omega_{y}(0)=0 & \rightarrow C_{3}=0
\end{array}\right\} \begin{array}{l}
\xi_{z}(l)=0 \rightarrow-\frac{p}{E I} \frac{l^{4}}{24}+C_{1} \frac{l^{3}}{6}+C_{2} \frac{l^{2}}{2}=0 \\
M_{y}(0)=0 \rightarrow-\frac{p}{E I} \frac{l^{2}}{2}+C_{1} l+C_{2}=0
\end{array}\right\} \begin{aligned}
& \left(\begin{array}{l}
\frac{l^{3}}{6} \frac{l^{2}}{2}\binom{C_{1}}{l}=\frac{p}{E I}\left(\begin{array}{l}
\frac{l^{4}}{24} \frac{5}{8} l \\
C_{2} \\
C_{2}
\end{array}\right) \longrightarrow-\frac{p}{E I} \frac{1}{8} l^{2}
\end{array}\right.
\end{aligned}
$$

Solution:

$$
\left\{\begin{array}{l}
Q_{z}(x)=p\left(x-\frac{5}{8} l\right) \\
M_{y}(x)=p\left(\frac{1}{8} l^{2}+\frac{x^{2}}{2}-\frac{5}{8} l x\right) \\
\omega_{y}(x)=\frac{p}{E I}\left(\frac{1}{8} l^{2} x+\frac{x^{3}}{6}-\frac{5}{16} l x^{2}\right) \\
\xi_{z}(x)=-\frac{p}{E I}\left(\frac{1}{16} l^{2} x^{2}+\frac{x^{4}}{24}-\frac{5}{48} l x^{3}\right)
\end{array}\right.
$$

