1.050 Engineering Mechanics

Lecture 24:
 Beam elasticity - derivation of governing equation

1.050 - Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms
2. Similarity relations: Important engineering tools
II. Stresses and strength
3. Stresses and equilibrium
4. Strength models (how to design structures, foundations.. against mechanical failure)

Lectures 4-15
Sept./Oct.
III. Deformation and strain
5. How strain gages work?
6. How to measure deformation in a 3D

Lectures 16-19 structure/material?

Oct.
IV. Elasticity
7. Elasticity model - link stresses and deformation
8. Variational methods in elasticity

Lectures 20-31
Oct./Nov.
V. How things fail - and how to avoid it
9. Elastic instabilities
10. Plasticity (permanent deformation)

Lectures 32-37
11. Fracture mechanics

Dec.

1.050 - Content overview

I. Dimensional analysis

II. Stresses and strength

III. Deformation and strain

IV. Elasticity

Lecture 20: Introduction to elasticity (thermodynamics)
Lecture 21: Generalization to 3D continuum elasticity
Lecture 22: Special case: isotropic elasticity
Lecture 23: Applications and examples
Lecture 24: Beam elasticity
Lecture 25: Applications and examples (beam elasticity)
Lecture 26: ... cont'd and closure
...
V. How things fail - and how to avoid it

Goal of this lecture

- Derive differential equations that can be solved to determine stress, strain and displacement fields in beam
- Consider 2D beam geometry:

+ boundary conditions (force, clamped, moments...)
- Approach: Utilize beam stress model, strain model for beams and combine with isotropic elasticity

Derivation of beam constitutive equation in 3-step approach

Section number below corresponds to section numbering used in class

Step 1: Consider continuum scale alone (derive a relation between stress and strain for the particular shape of the stress tensor in beam geometry)
2.1)

Step 2: Link continuum scale with section scale (use reduction formulas) 2.2)

Step 3: Link section scale to structural scale (beam EQ equations) 2.3)

Overview

$$
\omega_{y}^{0}=-\frac{d \xi_{z}^{0}}{d x}
$$

Curvature (=first derivative of rotation)

$$
\vartheta_{y}^{0}=-\frac{d^{2} \xi_{z}^{0}}{d x^{2}}=\frac{d \omega_{y}^{0}}{d x}
$$

2.1) Step 1 (continuum scale)

Consider a beam in uniaxial tension:

$$
\left(\sigma_{i j}\right)=\left(\begin{array}{ccc}
\sigma_{x x} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{equation*}
\sigma_{x x}=\left(K-\frac{2}{3} G\right)\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 G \varepsilon_{x x} \tag{1}
\end{equation*}
$$

3 unknowns, 2 equations; can eliminate one

$$
\begin{align*}
& \begin{array}{l}
3 \text { unknowns, } 2 \\
\text { equations; can } \\
\text { eliminate one } \\
\text { variable and obtain } \\
\text { relation between } 2 \\
\text { remaining ones }
\end{array}
\end{align*}\left\{\begin{array}{l}
\sigma_{y y}=\left(K-\frac{2}{3} G\right)\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 G \varepsilon_{y y} \stackrel{!}{=} 0 \tag{2}\\
\sigma_{z z}=\left(K-\frac{2}{3} G\right)\left(\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}\right)+2 G \varepsilon_{z z} \stackrel{!}{=} 0 \tag{3}
\end{array}\right.
$$

Eqns. (2) and (3) provide relation between $\varepsilon_{x x}$ and $\varepsilon_{y y}, \varepsilon_{z z}$:

$$
\varepsilon_{y y}=\varepsilon_{z z}=-\frac{1}{2} \underbrace{\frac{3 K-2 G}{3 K+G} \varepsilon_{x x}}_{=: v}=-v \varepsilon_{x x}
$$

Physical meaning "Poisson's effect"

- The 'Poisson effect' refers to the fact that beams contract in the lateral directions when subjected to tensile strain

$$
\varepsilon_{y y}=\varepsilon_{z z}=-v \varepsilon_{x x}
$$

From eq. (1) (with Poisson relation): $\quad \sigma_{x x}=\underbrace{\frac{9 K G}{3 K+G}} \varepsilon_{x x}$
$=: E \quad$ Young's modulus

$$
\sigma_{x x}=E \varepsilon_{x x}
$$

This result can be generalized: In bending, the shape of the stress tensor is identical, for any point in the cross-section (albeit the component $\sigma_{z z}$ typically varies with the coordinate z)

Thus, the same conditions for the lateral strains applies

Therefore: We can use the same formulas!

$$
\left(\sigma_{i j}\right)=\left(\begin{array}{ccc}
\sigma_{x x}(z) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

2.2) Step 2 (link to section scale)

Now: Plug in relation $\sigma_{x x}=E \varepsilon_{x x}$ into reduction formulas Consider that $\quad \varepsilon_{x x}=\frac{d \xi_{x}^{0}}{d x}-\frac{d^{2} \xi_{z}^{0}}{d x^{2}} Z \quad$ and thus $\quad \sigma_{x x}=E\left(\frac{d \xi_{x}^{0}}{d x}-\frac{d^{2} \xi_{z}^{0}}{d x^{2}} Z\right)$

Results in:

$$
\begin{gathered}
\text { Assume: E constant over } S \\
N=\int_{S} E\left(\frac{d \xi_{x}^{0}}{d x}-\frac{d^{2} \xi_{z}^{0}}{d x^{2}} z\right) d S \longrightarrow N=E \frac{d \xi_{x}^{0}}{d x} \int_{S} d S-E \frac{d^{2} \xi_{z}^{0}}{d x^{2}} \int_{S}^{0} z d S \\
M_{y}=\int_{S} E\left(\frac{d \xi_{x}^{0}}{d x} z-\frac{d^{2} \xi_{z}^{0}}{d x^{2}} z^{2}\right) d S \longrightarrow M_{y}=E \frac{d \xi_{x}^{0}}{d x} \int_{S}^{=0} z d S-E E \frac{d^{2} \xi_{z}^{0}}{d x^{2}} \underbrace{\text { Finally: } \quad N=E S \frac{d \xi_{x}^{0}}{d x}}_{\underbrace{=}_{S} z^{2} d S} \quad M_{y}=-E I \frac{d^{2} \xi_{z}^{0}}{d x^{2}} \quad \begin{array}{c}
\begin{array}{c}
\text { Area } \\
\text { moment } \\
\text { of inertia }
\end{array}
\end{array} \\
\end{gathered}
$$

2.3) Step 4 (link to structural scale)

Beam EQ equations:
Beam constitutive equations:

$$
\frac{d^{2} M_{y}}{d x^{2}}=-f_{z} \overbrace{\text { with: }}^{d x}=-f_{x} M_{y}=-E I \frac{d^{2} \xi_{z}^{0}}{d x^{2}}\left(\begin{array} { l }
{ M _ { y } = - E I \frac { d ^ { 4 } \xi _ { z } ^ { 0 } } { d x ^ { 4 } } = - f _ { z } } \\
{ N = E S \frac { d \xi _ { x } ^ { 0 } } { d x } }
\end{array} \left\{\begin{array}{l}
M^{\frac{d^{4} \xi_{z}^{0}}{d x^{4}}=\frac{f_{z}}{E I}} \\
\frac{d^{2} \xi_{x}^{0}}{d x^{2}}=-\frac{f_{x}}{E S}
\end{array}\right.\right.
$$

Beam bending elasticity

Governed by this differential equation:

$$
\frac{d^{4} \xi_{z}^{0}}{d x^{4}}=\frac{f_{z}}{E I}
$$

Integration provides solution for displacement
Solve integration constants by applying BCs

Note:
$E=$ material parameter (Young's modulus)
$I=$ geometry parameter (property of cross-section)
$f_{z}=$ distributed shear force
How to solve? Lecture 25

