1.050 Engineering Mechanics

Lecture 23: Example - detailed steps

Problem statement

Goal: Determine $\vec{\xi}(\vec{x}), \underline{\underline{\varepsilon}}(\vec{x}), \underline{\underline{\sigma}}(\vec{x})$

On the next few slides we will go through steps 1, 2, 3 and 4 to solve this problem.

Reminder: 4-step procedure to solve elasticity problems

- Step 1: Write down BCs (stress BCs and displacement BCs), analyze the problem to be solved (read carefully!)
- Step 2: Write governing equations for stress tensor, strain tensor, and constitutive equations that link stress and strain, simplify expressions
- Step 3: Solve governing equations (e.g. by integration), typically results in expression with unknown integration constants
- Step 4: Apply BCs (determine integration constants)

Step 1: Boundary conditions

Write out all BCs in mathematical equations

Displacement BCs: At $z=\mathrm{H}$: Displacement specified
$\vec{\xi}^{d}(z=H)=(0,0,0) \quad$ or $\quad \xi_{x}^{d}=0, \xi_{y}^{d}=0, \xi_{z}^{d}=0$
(no displacement at the interface between the soil layer and the rigid substrate)

Stress BCs: At z=0: Stress vector provided $\vec{T}^{d}\left(\vec{n}=-\vec{e}_{z}, z=0\right)=p \vec{e}_{z}$
\uparrow
Note: Orientation of surface and C.S.

Step 2: Governing equations

Write out all governing equations and simplify

Due to the symmetry of the problem (infinite in x - and y-directions), the solution will depend on z only, and there are no displacements in the x - and y-directions (anywhere in the solution domain): $\xi=\xi_{z} \vec{e}_{z}$

Governing eqn. for strain tensor: $\quad \varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial \xi_{i}}{\partial x_{j}}+\frac{\partial \xi_{j}}{\partial x_{i}}\right)$
Calculation of strain tensor simplifies (symmetry):

$$
\begin{equation*}
\varepsilon_{z z}=\frac{\partial \xi_{z}}{\partial z} \tag{*}
\end{equation*}
$$

Note : only 1 nonzero coefficient of strain tensor

Governing eqn. for stress tensor: $\quad \operatorname{div} \underline{\underline{\sigma}}+\rho \vec{g}=0$ (cont'd next slide)

Step 2: Governing equations (cont'd)

Due to symmetry, only dependence on z-direction
$\left.\begin{array}{c}\frac{\sigma_{x z}}{\partial z}=0 \quad \frac{\sigma_{y z}}{\partial z}=0 \\ \frac{\sigma_{z z}}{\partial z}+\rho g=0\end{array}\right\} \begin{aligned} & \text { Final set of governing eqns. for stress tensor } \\ & \text { (note: } g_{z}=g \text {) }\end{aligned}$

Step 2: Governing equations (cont'd)

Link between stress and strain

Linear isotropic elasticity (considering that there is only one nonzero coefficient in the strain tensor, $\varepsilon_{z z}$):

$$
\begin{align*}
& \sigma_{11}=\left(K-\frac{2}{3} G\right) \varepsilon_{33} \\
& \sigma_{22}=\left(K-\frac{2}{3} G\right) \varepsilon_{33} \\
& \sigma_{33}=\left(K+\frac{4}{3} G\right) \varepsilon_{33} \tag{2}
\end{align*}
$$

Step 2: Governing equations (cont'd)

Now combine eqns. (*), (1) and (2):
Substitute (2) in (1): $\quad \frac{\partial \varepsilon_{z z}}{\partial z}\left(K+\frac{4}{3} G\right)+\rho g=0$
Substitute (*) in (4): $\quad \frac{\partial^{2} \xi_{z}}{\partial \mathrm{z}^{2}}\left(K+\frac{4}{3} G\right)+\rho g=0$

$$
\begin{equation*}
\frac{\partial^{2} \xi_{z}}{\partial z^{2}}=-\frac{\rho g}{K+\frac{4}{3} G} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\sigma_{x z}}{\partial z}=0 \quad \frac{\sigma_{y z}}{\partial z}=0 \tag{6}
\end{equation*}
$$

Step 2 results in a set of differential eqns.

Step 3: Solve governing eqns. by integration
From (5): $\left\{\begin{array}{ll}\frac{\partial \xi_{z}}{\partial z}=-\frac{\rho g}{K+\frac{4}{3} G} z+C_{1}=\varepsilon_{z z} & \text { (first integration) } \\ \sigma_{z z}=\left(K+\frac{4}{3} G\right)\left(-\frac{\rho g}{K+\frac{4}{3} G} z+C_{1}\right.\end{array}\right) \begin{array}{ll} \\ \begin{array}{l}\text { (knowledge of strain enables } \\ \text { to calculate stress via eq. (2)) }\end{array} \\ \xi_{z}=-\frac{1}{2} \frac{\rho g}{K+\frac{4}{3} G} z^{2}+C_{1} z+C_{2} & \text { (second integration) }\end{array}$
From (6):

$$
\frac{\sigma_{x z}}{\partial z}=0 \quad \frac{\sigma_{y z}}{\partial z}=0 \quad \sigma_{x z}=\text { const. }=C_{3} \quad \sigma_{y z}=\text { const. }=C_{4}
$$

Step 4: Apply BCs

Stress boundary conditions: Integration provided that

$$
\sigma_{x z}=\text { const. }=C_{3} \quad \sigma_{y z}=\text { const } .=C_{4}
$$

Stress vector at the boundary of the domain:

$$
\vec{T}\left(\vec{n}=-\vec{e}_{z}, z=0\right)=\underline{\underline{\sigma}}(z=0) \cdot\left(-\vec{e}_{z}\right)
$$

Left and right side must be equal, therefore:

$$
\sigma_{x z}=C_{3}=0, \sigma_{y z}=C_{4}=0
$$

$$
\sigma_{z z}=-p
$$

Note: Orientation of surface and C.S.

Step 4: Apply BCs (cont'd)

Further,

$$
\begin{array}{ll}
\sigma_{z z}=K+\frac{4}{3} G\left(-\frac{\rho g}{K+\frac{4}{3} G} z+C_{1}\right) & \text { (general solution) } \\
\sigma_{z z}(z=0)=C_{1}\left(K+\frac{4}{3} G\right) \stackrel{!}{=}-p & \text { (at } z=0, \text { see previous slide) }
\end{array}
$$

This enables us to determine the constant C_{1}

$$
C_{1}=-\frac{p}{K+\frac{4}{3} G}
$$

Step 4: Apply BCs (cont'd)

Displacement boundary conditions:

$$
\xi_{z}=-\frac{1}{2} \frac{\rho g}{K+\frac{4}{3} G} z^{2}-\frac{p}{K+\frac{4}{3} G} z+C_{2} \quad \begin{aligned}
& \text { (general solution, with } C_{1} \\
& \text { included) }
\end{aligned}
$$

Displacement is known at $z=H$:

$$
\xi_{z}(z=H)=-\frac{1}{2} \frac{\rho g}{K+\frac{4}{3} G} H^{2}-\frac{p}{K+\frac{4}{3} G} H+C_{2} \stackrel{!}{=} 0
$$

This enables us to determine the constant C_{2}

$$
C_{2}=\frac{1}{K+\frac{4}{3} G}\left(\frac{\rho g}{2} H^{2}+p H\right)
$$

Final solution (summary): Displacement field, strain field, stress field

$$
\left\{\begin{array}{l}
\xi_{z}(z)=\frac{1}{K+\frac{4}{3} G}\left(\frac{\rho g}{2}\left(H^{2}-z^{2}\right)-p(z-H)\right) \\
\varepsilon_{z z}(z)=\frac{-\rho g z+p}{K+\frac{4}{3} G} \\
\sigma_{z z}(z)=-\rho g z+p
\end{array}\right.
$$

Solution sketch

Displacement profile

Stress profile:

