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HW#2-SOLUTION: Stress & Strength —

Nano-Indentation


October 6, 2003 

MIT — 1.033/1.57 
Fall 2003 
Instructor: Franz-Josef ULM 

1 Statically Admissible Stress Fields 

A statically admissible stress field is a stress field which satisfies (i) the force boundary 
conditions, (ii ) the stress vector continuity condition on any surface in the material; (iii ) 
the symmetry of the stress tensor; (iv ) the momentum balance. 

1.1 Boundary Conditions 

For the nanoindentation test, the boundary conditions are: 

• In Ω1: 

— Frictionless contact: 

t = er : σrz = 0  
on z = 0; r <  r0;n = −ez : T(n = −ez) · t = 0↔ (1)

t = eθ : σθz = 0  

— Force boundary condition: 

on z = 0; r <  r0;n = −ez : N d = Fez ≡ σ · nda = − σ · ezda (2)
2

0 
2

0
A=πr A=πr

— From a combination of (1) and (2), it follows: ⎧ ⎫ ⎪ 〈σrz〉A = 0  ⎪ ⎨ ⎬ 
on z = 0; r ≤ r0;n = −ez : = 0  (3)〈σθz〉A ⎪ ⎪ ⎩ ⎭〈σzz〉A = −H 

1where 〈σij 〉A σij da stands for the stress average of σij over the surface =
 2

0
A=πr

A = πr0
2, and  H = F/A  is the micro-hardness measured in the nanoindentation 

test.  Note that it cannot  a priori  be concluded that σzz = −F/A, since  σzz may 
not be constant over the contact area. 

• In Ω2: ⎧ ⎫ ⎪ ⎨ σrz = 0  ⎪ ⎬ 
on z = 0; r >  r0;n = −ez : T(n = −ez) = 0⇒ σθz = 0  (4) ⎪ ⎪ ⎩ ⎭σzz = 0  
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1.2 Continuity of Stress Vector 

On the interface between domain Ω1 and Ω2: 

⎧ ⎫ 
σ(1) = σ(2) ⎪ ⎪ ⎨ rr rr ⎬ 

: T(1)(n = er) +T
(2)(z >  0; r = r0;n = er n = −er) = 0⇒ σ

(1) 
= σ

(2) (5)
θr θr ⎪ ⎪ ⎭⎩ 
σ(1) = σ(2) zr zr 

1.3 Form of the Stress Tensor 

Given the rotational symmetry of the problem, σθr = 0 in Ω. The stress tensor, therefore, is 
of the diagonal form: 

in Ω : σ = σrrer ⊗ er + σθθeθ ⊗ eθ + σzzez ⊗ ez (6) 

which satisfies the symmetry condition, σ = t σ, and the boundary conditions (3) and (4), 
and the continuity condition (5). 

1.4 Momentum Balance 

Neglecting body forces, the stress tensor σ in Ωmust satisfy the following momentum balance 
equations (cylinder coordinates): 

⎧ 
1 ⎫ ⎪ er : ∂σrr + [σrr − σθθ] = 0  ⎪ ⎨ ∂r r ⎬ 

eθ :
∂σθθin Ω : divσ = 0 :  = 0  (7) ⎪ ∂θ ⎪ ⎩ 

ez : ∂σzz ⎭= 0
∂z 

1.5 Application 

• In Ω1: 
in z >  0; r <  r0 : σ

� = q ; σ� θθ = q ; σ
� = σ (8)rr zz 

From (7)1:

�(1) � ��
∂σrr 

= 0;  σ�(1) ⇒ q = q (9)rr = σθθ∂r 
From (7)3 and (3)3: 

∂σzz 
= 0;  σ�(1) = σ = −H (10) 

∂z zz 

• In Ω2: The stress field, 

in z >  0; r >  r0 : σ
� = −q(r0/r)2; σ� = q(r0/r)2 (11) rr θθ 

satisfies the boundary condition (4), the momentum balance equations (7)1: 

∂σ� rr 
∂r 

+ 
1 
r 
[σ� rr − σ� θθ] = 2

q 
r 

( 
r0 

r 

)2 

+
q 
r 

[ 

− 
( 
r0 

r 

)2 

− 
( 
r0 

r 

)2 
] 

= 0  (12) 

The stress continuity (5) is satisfied for: 

z >  0; r = r0 : σ
�(1) = σ�(2) � ⇔ q ≡ −q (13) rr rr 

2 



October 6, 2003 page 3


σ

er 

n 

t 

T(n) 

ϑ(er,n) = −π/4 

ez 

F 

Domain Domain 
Ω1 Ω2 

σ 

τ 

max τ 

σrr =σθθ = 
σrr= − q 

zz=−H 

T(er)−2ϑ(er,n) = π/2 

T(n) 

Ω2 

Ω1 

σθθ = q 

Domain 

Domain 

(1) (1) 

(2) 

(2) 

(a) (b) 

Figure 1: Stress Representation of the Nano-Indentation stress model: (a) material plane; 
(b) Mohr plane. 

1.6 Mohr Representation 

The stress field are: 

in Ω1 : σ �(1) = q [er ⊗ er + eθ ⊗ eθ] − Hez ⊗ ez (14) ( )2


in Ω2 : σ �(2) = q
r0


[−er ⊗ er + eθ ⊗ eθ] (15) 
r 

The Mohr circles are displayed in Figure 1b, for H > q. The maximum shear occurs in 
Ω1 and the corresponding stress vector has the components: 

H − q H + q 
max τ = ; σ = − (16) 

2 2 

The maximum shear stress occurs on the surface oriented by (see Figure 1a): 
√ 
2 

n = [er + ez] (17) 
2 

2 Mohr-Coulomb Criterion 

The unknown of the problem is the stress quantity q. It is determined through application 
of the Mohr-Coulomb criterion: 

• In Ω1: 
σ
(1) 
= σ(1) = −q; σ(1) = −H (18) I II  III 
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Use in the Mohr-Coulomb Criterion reads: 

f(σ �(1)) =  −q(1 + sin ϕ) +  H(1 − sin ϕ) − 2c cos ϕ ≤ 0 (19) 

• In Ω2: 

σ
(2) 
I = q 

( 
r0 
)2 

; σ(2) II  = 0;  σ(2) III  = −q 
( 
r0 
)2 

(20) 
r r 

Use in the Mohr-Coulomb criterion reads: 
( )2r0

f(σ) = 2q − 2c cos ϕ ≤ 0 (21) 
r 

From (20), we obtain: 

( )2r 
q ≤ c cos ϕ ⇒ max q = c cos ϕ (22) 

r=r0r0 

Use in (19) gives the sought relation between the Hardness measurement and the Mohr-
Coulomb model parameters: 

3 + sin  ϕ 
H ≤ max H = c cos ϕ (23) 

1 − sin ϕ 

The representation of this limit state is shown in Figure 2, in both the physical plane and 
the Mohr-plane. The critical stress state is reached in Ω1 on a material surface oriented by: 

n = cos  φer − sin φez; φ = −π/4 +  ϕ/2 (24) 

3 Refined  Approach  

We consider that the stress state in Ω2 was constant. From the momentum balance (7)1 we 
find: 

∂σrr 
= 0  ⇒ σ(2) = σ(2) (25) 

∂r rr θθ 

This stress field is statically admissible provided that the stress continuity along r = r0 is 
ensured: 

σ(1) = σ(2) = q � (26) rr rr 

It follows: 

• In Ω1: 
σ
(1) 
= σ(1) = q �; σ(1) = −H (27) I II  III 

Use in the Mohr-Coulomb Criterion reads: 

�(1)) =  q �f(σ (1 + sin ϕ) +  H(1 − sin ϕ) − 2c cos ϕ ≤ 0 (28) 
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Figure 2: Stress State at strength limit: (a) material plane; (b) Mohr plane. 

• In Ω2: 
σ
(2) 
= 0;  σ(2) (2) � = (29) I II  III  = q 

Use in the Mohr-Coulomb criterion yields: 

�(2)) =  −q �f (σ (1 − sin ϕ) − 2c cos ϕ ≤ 0 (30) 

From (30) we obtain: 
2c cos ϕ −q � ≤ (31) 
1 − sin ϕ 

Use in (28) yields: 

1 1 + sin  ϕ 4c cos ϕ 
f (σ �(1)) ≤ 0 :  H ≤ max H = 2c cos ϕ + = (32) 

1 − sin ϕ (1 − sin ϕ)2 (1 − sin ϕ)2 

This improves stress-strength solution is displayed in the Mohr-Plane in Figure 4. It 
is obtained by shifting the Mohr-circle in domain Ω2 along the normal stress axis into the 
compression domain. This yields a higher micro-hardness than the first solution (see Figure 
3). Since the stress field is statically admissible and since it satisfies the strength criterion, 
this higher value is closer to the ‘real’ micro-hardness of the material. The material planes 
along which the material realizes the strength criterion are still the same as before (see Figure 
2a), but extends now also in domain Ω2.  This is displayed  in  Figure  5  (NOT  ASKED).  
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Figure 3: Comparison of the normalized micro-hardness values versus friction angle. 
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Figure 4: Improved Stress-Strength Solution in the Mohr-Plane. The stress state is statically 
admissible, and satisfies the Mohr-Coulomb strength criterion.  
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Figure 5: Improved Stress-Strength solution: Display of normal planes on which the strength 
criterion is achieved. 
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