1.017/1.010 Class 21 Multifactor Analysis of Variance

Multifactor Models

We often wish to consider several factors contributing to variability ratherr than just one. Extend concepts of single factor ANOVA to multiple factors. Focus on the two-factor case.

Suppose there I treatments for Factor A and J treatments for factor B. , giving $I J$ random variables described by CDFs $F_{x i j}\left(x_{i j}\right)$. The different $F_{x i j}\left(x_{i j}\right)$ are assumed identical (except for their means) and normally distributed (check this, as in single factor case).

A random sample $\left[x_{i j 1}, x_{i j 2}, \ldots, x_{i j K}\right]$ of size K is obtained for treatment combination (i, j). Two-factor model describing $\boldsymbol{x}_{i j k}$:

$$
\begin{aligned}
& \qquad \boldsymbol{x}_{i j k}=\mu_{i j}+\boldsymbol{e}_{i j k}=\mu+a_{i}+b_{j}+c_{i j}+\boldsymbol{e}_{i j k} \\
& \mu_{i j}=E\left[\boldsymbol{x}_{i j k}\right]=\mu+a_{i}+b_{j}+c_{i j}=\text { unknown mean of } \boldsymbol{x}_{i j k}(\text { for all } k) \\
& \left.\mu=\text { unknown grand mean (average of } \mu_{i} \mathbf{s}\right) . \\
& a_{i}=\text { unknown main effects of Factor } \boldsymbol{A} \\
& b_{j}=\text { unknown main effects of Factor } \boldsymbol{B} \\
& c_{i j}=\text { unknown interactions between Factors } A \text { and } B \\
& \boldsymbol{e}_{i j k}=\text { random residual for treatment } i, \text { replicate } j \\
& E\left[\boldsymbol{e}_{i j k}\right]=0, \operatorname{Var}\left[\boldsymbol{e}_{i j k}\right]=\sigma^{2}, \text { for all } i, j, k
\end{aligned}
$$

Note that $c_{i j}$ can only be distinguished from $\boldsymbol{e}_{i j k}$ if number of replicates $K>1$. Constraints:

$$
\sum_{i=1}^{I} a_{i}=\sum_{j=1}^{J} b_{j}=0 \quad \sum_{i=1}^{I} c_{i j}=0 \quad \forall j \quad \sum_{j=1}^{J} c_{i j}=0 \quad \forall i
$$

Objective is to estimate/test values of $a_{i}{ }^{\prime} \mathrm{s}, b_{j}^{\prime} \mathrm{s}$, and $c_{i j}$'s, which are distributional parameters for the $F_{x i j}\left(x_{i j}\right)$'s.

Formulating the Problem as a Hypothesis Test

Formulate three sum-of-squares hypotheses that insure that all a_{i} 's, all b_{i} 's, or all $c_{i j}$'s are zero:

HOA : $\sum_{i=1}^{I} a_{i}^{2}=0$
HOB : $\sum_{j=1}^{J} b_{i}^{2}=0$
$\mathrm{HOAB}: \sum_{j=1}^{J} \sum_{i=1}^{I} c_{i}^{2}=0$

Derive test statistics based on sums-of-squares of data.
Sums-of-Squares Computations
Define treatment and grand sample means:

$$
\begin{aligned}
& m_{x i}=\frac{1}{J K} \sum_{j=1}^{J} \sum_{k=1}^{K} x_{i j k}=\bar{x}_{i . .} \quad m_{x j}=\frac{1}{I K} \sum_{i=1}^{I} \sum_{k=1}^{K} x_{i j k}=\bar{x}_{. j} . \\
& m_{x i j}=\frac{1}{K} \sum_{j=1}^{K} x_{i j h}=\bar{x}_{i j .} \\
& m_{x}=\frac{1}{I J K} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} x_{i j k}=\bar{x}_{\ldots} .
\end{aligned}
$$

Test statistics are computed from sums-of-squares:

$$
\begin{aligned}
& \operatorname{SSE}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(x_{i j k}-m_{x i j}\right)^{2} \\
& \mathbf{S S A}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(m_{x i}-m_{x}\right)^{2} \quad \mathbf{S S B}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(m_{x j}-m_{x}\right)^{2} \\
& \operatorname{SSAB}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(m_{x y j}-m_{x i}-m_{x j}+m_{x}\right)^{2} \\
& \boldsymbol{S S T}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(x_{i j k}-m_{x}\right)^{2}=\boldsymbol{S S} E+\mathbf{S S} \boldsymbol{A}+\boldsymbol{S S} B+\boldsymbol{S S} A B
\end{aligned}
$$

Corresponding mean-sums-of-squares are:

$$
\begin{aligned}
& M S E=\frac{S S E}{I J(K-1)} \\
& M S A=\frac{S S A}{I-1} \quad M S B=\frac{S S B}{J-1} \\
& M S A B=\frac{S S A B}{(I-1)(J-1)}
\end{aligned}
$$

Expected values of these mean-sums-of-squares show depends on main effects and interactions:

$$
\begin{aligned}
& E[M S E]=\sigma^{2} \\
& E[M S A]=\sigma^{2}+\frac{J K}{I-1} \sum_{i=1}^{I} a_{i}^{2} \quad E[M S B]=\sigma^{2}+\frac{I K}{I-1} \sum_{j=1}^{J} b_{j}^{2} \\
& E[M S A B]=\sigma^{2}+\frac{K}{(I-1)(J-1)} \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j}^{2}
\end{aligned}
$$

Test Statistic

Use ratios as test statistics for the three hypotheses:

$$
\begin{aligned}
& \Psi_{A}(M S A, M S E)=\frac{M S A}{M S E} \\
& \Psi_{B}(M S B, M S E)=\frac{M S B}{M S E} \\
& \Psi_{A B}(M S A B, M S E)=\frac{M S A B}{M S E}
\end{aligned}
$$

When H0 is true each statistic follows \mathbf{F} distribution with degree of freedom parameters $v_{A}=I-1, v_{B}=J-1, v_{A B}=(I-1)(J-1)$, and $v_{E}=I J(K-1)$.

One-sided rejection regions

$$
\begin{aligned}
& R 0 A: \mathcal{F}(M S A, M S E) \geq F_{\boldsymbol{F}, v_{A}, v_{E}}^{-1}[\alpha] \\
& R 0 B: \mathcal{F}(M S B, M S E) \geq F_{\boldsymbol{F}, v_{B}, v_{E}}^{-1}[\alpha] \\
& R 0 A B: \mathcal{F}(M S A B, M S E) \geq F_{\boldsymbol{q}, v_{A B}, v_{E}}^{-1}[\alpha]
\end{aligned}
$$

One-sided p-values:

$$
\begin{aligned}
& p_{A}=1-F_{\boldsymbol{\Psi}, v_{A} v_{E}}[T \mathcal{F}(M S A, M S E)] \\
& p_{B}=1-F_{\boldsymbol{q}, v_{A} v_{E}}[T(M S B, M S E)] \\
& p_{A B}=1-F_{\boldsymbol{q}, v_{A B} v_{E}}[T(M S A B, M S E)]
\end{aligned}
$$

Unbalanced ANOVA problems with different sample sizes for different treatments can be handled by modifying formulas slightly.

Two-Factor ANOVA Tables

Source	SS	df	MS	F	p
Factor A	$S S A$	$v_{A}=I-1$	$M S A=$ $S S A / v_{A}$	$F_{A}=$ $M S A / M S E$	$p=$ $1-F_{F, v \mathrm{vaE}}(F)$
Factor B	$S S B$	$v_{B}=J-1$	$M S B=$ $S S B / v_{B}$	$F B=$ $M S B / M S E$	$p=$ $1-F_{F, v B, v E}(F)$
Interaction $A B$	$S S A B$	$v_{A B}=(I-1)(J-1)$	$M S A B=$ $S S A B / v_{A B}$	$F_{A B}=$ $M S A B / M S E$	$p=$ $1-F_{F, v A B, v E}(F)$
Error	$S S E$	$v_{E}=I J(K-1)$	$M S E=$ $S S E / v_{E}$		
Total	$S S T$	$v_{T}=I J K-1$			

Exercise: Two Factor ANOVA

Relevant MATLAB functions: normplot, anova2

Concepts and Definitions

Objective: Identify factors responsible for variability in observed data
Specify one or more factors that could account for variability (e.g. location, time, etc.). Each factor is associated with a particular set of populations or treatments (e.g. particular sampling stations, sampling days, etc.). One-way analysis of variance (ANOVA) considers only a single factor.

Suppose a random sample $\left[x_{i 1}, x_{i 2}, \ldots, x_{i J}\right]$ is obtained for treatment i. There are $i=1, \ldots, I$ treatments (e.g. each treatment may correspond to a different sampling location).

Arrange data in a table/array -- rows are treatments, columns are replicates:

$$
\begin{gathered}
{\left[x_{11}, x_{12}, \ldots, x_{1 J}\right]} \\
{\left[x_{21}, x_{22}, \ldots, x_{2 J}\right]} \\
\cdot \\
\cdot \\
{\left[x_{I 1}, x_{I 2}, \ldots, x_{I J}\right]}
\end{gathered}
$$

Here we assume each treatment has same number of replicates J. The ANOVA procedure may be generalized to allow different number of replicates for each treatment.

Each random sample has a CDF $F_{x i}\left(x_{i}\right)$. The different $F_{x i}\left(x_{i}\right)$ are assumed identical except for their means, which may differ. Classical ANOVA also assumes that all data are normally distributed.

Each random variable $\boldsymbol{x}_{i j}$ is decomposed into several parts, as specified by the following one-factor model:

$$
\boldsymbol{x}_{i j}=\mu_{i}+\boldsymbol{e}_{i j}=\mu+a_{i}+\boldsymbol{e}_{i j}
$$

$$
\begin{aligned}
& \mu_{i}=E\left[\boldsymbol{x}_{i j}\right] \text { is unknown mean of } \boldsymbol{x}_{i}(\text { for all } j) . \\
& \left.\mu=\text { unknown grand mean (average of } \mu_{i^{\prime} s}\right) . \\
& a_{i}=\mu_{i}-\mu=\text { unknown deviation of treatment mean from grand } \\
& \text { mean (often called an effect) } \\
& \boldsymbol{e}_{i j}=\operatorname{random} \text { residual for treatment } i \text {, replicate } j \\
& E\left[\boldsymbol{e}_{i j}\right]=0, \operatorname{Var}\left[\boldsymbol{e}_{i j}\right]=\sigma^{2}, \text { for all } i, j
\end{aligned}
$$

Objective is to estimate/test values of a_{i} 's, which are the unknown distributional parameters of the $F_{x i}\left(x_{i}\right)$'s.

Formulating the Problem as a Hypothesis Test

If the factor does not affect variability in the data then all a_{i} 's $=0$. Use hypothesis test:

$$
\mathrm{H} 0: a_{1}=a_{2}=\ldots=a_{I}=0
$$

It is better to test all a_{i} simultaneously than individually or in pairs. Test that sum-of-squared $a_{i} \mathrm{~s}=0$.

$$
\mathrm{H} 0: \sum_{i=1}^{I} a_{i}^{2}=0
$$

Derive a test statistic based on sums-of-squares of data.
Sums-of-Squares Computations
Define the sample treatment and grand means:

$$
\begin{aligned}
& \boldsymbol{m}_{\boldsymbol{x} i}=\frac{1}{J} \sum_{j=1}^{J} \boldsymbol{x}_{i j}=\overline{\boldsymbol{x}}_{i .} \\
& \boldsymbol{m}_{\boldsymbol{x}}=\frac{1}{I J} \sum_{i=1}^{I} \sum_{j=1}^{J} \boldsymbol{x}_{i j}=\overline{\boldsymbol{x}}_{. .}
\end{aligned}
$$

The total sum-of-squares $\boldsymbol{S S T}$ measures variability of $\boldsymbol{x}_{i j}$ around $\boldsymbol{m}_{\boldsymbol{x}}$:

$$
\begin{aligned}
\boldsymbol{S S T} & =\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{\boldsymbol{x}}\right)^{2} \\
& =\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{\boldsymbol{x} i}\right)^{2}+\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\boldsymbol{m}_{\boldsymbol{x} i}-\boldsymbol{m}_{\boldsymbol{x}}\right)^{2} \\
& =\boldsymbol{S S} \boldsymbol{E}+\boldsymbol{S S T r}
\end{aligned}
$$

SST can be divided into error sum-of-squares $\boldsymbol{S S E}$ and treatment sum-of-squares SSTr.
$\boldsymbol{S S E}$ measures variability of $\boldsymbol{x}_{i j}$ around $\boldsymbol{m}_{x i}$, within treatments:

$$
\boldsymbol{S S} \boldsymbol{E}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{\boldsymbol{x i}}\right)^{2}
$$

$\boldsymbol{S S T r}$ measures variability of $\boldsymbol{m}_{x i}$ around \boldsymbol{m}_{x}, across treatments:

$$
\boldsymbol{S S T r}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(\boldsymbol{m}_{x i}-\boldsymbol{m}_{\boldsymbol{x}}\right)^{2}
$$

Error and treatment mean squared values:

$$
\begin{aligned}
& \boldsymbol{M S E}=\frac{\boldsymbol{S S E}}{I(J-1)} \\
& \boldsymbol{M S T r}=\frac{\boldsymbol{S S T r}}{I-1} \\
& E[\boldsymbol{M S E}]=\sigma^{2} \\
& E[\boldsymbol{M S T r}]=\sigma^{2}+\frac{J}{I-1} \sum_{i=1}^{I} a_{i}^{2}
\end{aligned}
$$

$\boldsymbol{M S E}$ is an unbiased estimate of σ^{2}, even if a_{i}^{\prime} s are not zero.
MSTr is an unbiased estimate of σ^{2}, only if all a_{i} 's are zero.

Test Statistic

Use ratio $\operatorname{MSTr} / \mathbf{M S E}$ as a test statistic:

$$
\mathcal{F}(M S E, M S T r)=\frac{M S T r}{M S E}
$$

When H 0 is true and $\boldsymbol{x}_{i j}$'s are normally distributed this statistic follows \boldsymbol{F} distribution with $v_{T r}=I-1$ and $v_{E}=I(J-1)$ degrees of freedom. Check normality by plotting $\left(\boldsymbol{x}_{i j}-\boldsymbol{m}_{x i}\right)$ with normplot.

One-sided rejection region (rejects only if MSTr is large):

$$
R 0: \mathcal{F}(\text { MSE }, M S T r) \geq F_{F, v_{T r}, v_{E}}^{-1}[\alpha]
$$

One-sided p-value:

$$
p=1-F_{F, v_{r r}, v_{E}}[F(M S E, M S t r)]
$$

Unbalanced ANOVA problems with different sample sizes for different treatments can be handled by modifying formulas slightly (see Devore, Section 10.3).

Single Factor ANOVA Tables

Above calculations are typically summarized in an ANOVA table:

Source	SS	df	MS	F	p
Treatments	SSTr	$v_{T r}=I-1$	$\begin{aligned} & \text { MSTr }= \\ & \text { SSTr }^{2} / \mathrm{v}_{T r} \end{aligned}$	$F=M S T r / M S E$	$\begin{aligned} & p= \\ & 1-F_{F, v T r, v E}(F) \end{aligned}$
Error	SSE	$v_{E}=I(J-1)$	$\begin{aligned} & M S E= \\ & S S E / v_{E} \end{aligned}$		
Total	SST	$\nu_{T}=I J-1$	$\begin{aligned} & M S T= \\ & S S T / v_{T} \end{aligned}$		

Example -- Effect of Season on Oxygen Level

Consider following set of dissolved oxygen concentration data ($x_{i j}$) obtained in 4 different seasons/treatments (rows), 6 replicates per season (columns):

5.62	6.12	6.62	6.21	7.08	5.36
7.70	8.31	8.80	8.24	7.87	7.44
2.52	5.44	4.94	2.99	4.39	4.44
6.77	6.65	6.01	6.26	7.09	6.05

Use a single factor ANOVA to determine if season has a significant impact on oxygen variability.

The MATLAB anoval function derives the error and treatment sums of squares and computes p value. When using anoval be sure to transpose the data array (MATLAB requires treatments in columns and replicates in rows).

Results are presented in this standard single factor ANOVA table:

Source	SS	df	MS $=$ SS $/ \mathrm{df}$	F	p
Treatments	47.1642	3	15.7214	29.8	$1.4 \mathrm{E}-7$
Error	10.5518	20	0.5276		
Total	57.716	23			

The very low p value indicates that seasonality is highly significant in this case. Note that MSTr, which depends on the a_{i} 's, is much larger than MSE

$$
\mathrm{F} \text { CDF, } v_{T r}=3, v_{E}=5
$$

MIT
Copyright 2003 Massachusetts Institute of Technology Last modified Oct. 8, 2003

