MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu.terms.

Second-Moment Characterization of Random Variables and Vectors. Second-Moment(SM) and First-Order Second-Moment(FOSM)

Propagation of Uncertainty

(a) Random Variables

- Second-Moment Characterization
- Mean (expected value) of a random variable

$$
\begin{aligned}
E[X]=m_{X} & =\sum_{\text {all } x_{i}} x_{i} P_{X}\left(x_{i}\right) \quad \text { (discrete case) } \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \quad \text { (continuous case) }
\end{aligned}
$$

- Variance (second central moment) of a random variable

$$
\begin{aligned}
& \sigma_{X}^{2}=\operatorname{Var}[X]=E\left[\left(X-m_{X}\right)^{2}\right]=\sum_{\text {all } x_{i}}\left(x_{i}-m_{X}\right)^{2} P_{X}\left(x_{i}\right) \quad \text { (discrete case) } \\
& \sigma_{X}^{2}=\int_{-\infty}^{\infty}\left(x-m_{X}\right)^{2} f_{X}(x) d x \quad \text { (continuous case) }
\end{aligned}
$$

- Examples

- Poisson distribution

$$
\begin{aligned}
& P_{Y}(y)=\frac{(\lambda t)^{y} e^{-\lambda t}}{y!}, \quad y=0,1,2, \ldots \\
& m_{Y}=\lambda t \\
& \sigma_{Y}^{2}=\sum_{y=0}^{\infty}(y-\lambda t)^{2} P_{Y}(y)=\lambda t=m_{Y}
\end{aligned}
$$

- Exponential distribution

$$
\begin{aligned}
& f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0 \\
& m_{X}=\frac{1}{\lambda} \\
& \sigma_{X}^{2}=\int_{0}^{\infty}\left(x-\frac{1}{\lambda}\right)^{2} f_{X}(x) d x=\frac{1}{\lambda}^{2}=m_{X}^{2}
\end{aligned}
$$

- Notation
$X \sim\left(m, \sigma^{2}\right)$ indicates that X is a random variable with mean value m and variance σ^{2}.
- Other measures of location
- Mode $\tilde{x}=$ value that maximizes P_{X} or f_{X}
- Median $x_{50}=$ value such that $F_{X}\left(x_{50}\right)=0.5$
- Other measures of dispersion
- Standard deviation
$\sigma_{X}=\sqrt{\sigma_{X}^{2}} \quad$ (same dimension as X$)$
- Coefficient of variation
$V_{X}=\frac{\sigma_{X}}{m_{X}} \quad$ (dimensionless quantity)
- Expectation of a Function of a Random Variable. Initial and Central Moments.
- Expected value of a function of a random variable

Let $Y=g(X)$ be a function of a random variable X. Then the mean value of Y is:
$E[Y]=E[g(X)]=\int_{-\infty}^{\infty} y f_{Y}(y) d y$
Importantly, it can be shown that $E[Y]$ can also be found directly from f_{X}, as:
$E[Y]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

- Linearity of expectation

It follows directly from the above and from linearity of integration that, for any constants a_{1} and a_{2} and for any functions $g_{1}(X)$ and $g_{2}(X)$:

$$
E\left[a_{1} g_{1}(X)+a_{2} g_{2}(X)\right]=a_{1} E\left[g_{1}(X)\right]+a_{2} E\left[g_{2}(X)\right]
$$

- Expectation of some important functions

1. $E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x$
(called initial moments; the mean m_{X} is also the first initial moment)
2. $E\left[\left(X-m_{X}\right)^{n}\right]=\int_{-\infty}^{\infty}\left(x-m_{X}\right)^{n} f_{X}(x) d x$
(called central moments; the variance σ_{X}^{2} is also called the second central moment)

- Consequences of Linearity of Expectation. Second-Moment(SM) Propagation of

 Uncertainty for Linear Functions.1. $\sigma_{X}^{2}=\operatorname{Var}[X]=E\left[\left(X-m_{X}\right)^{2}\right]=E\left[X^{2}\right]-2 m_{X} E[X]+m_{X}^{2}=E\left[X^{2}\right]-m_{X}^{2}$

$$
\Rightarrow E\left[X^{2}\right]=\sigma_{X}^{2}+m_{X}^{2}
$$

2. Let $Y=a+b X$, where a and b are constants. Using linearity of expectation, one obtains the following expressions for the mean value and variance of Y :

$$
\begin{aligned}
& m_{Y}=a+b E[X]=a+b m_{X} \\
& \sigma_{Y}^{2}=E\left[\left(Y-m_{Y}\right)^{2}\right]=b^{2} \sigma_{X}^{2}
\end{aligned}
$$

- First-Order Second-Moment(FOSM) Propagation of Uncertainty for Nonlinear Functions

Usually, with knowledge of only the mean value and variance of X , it is impossible to calculate m_{Y} and σ_{Y}^{2}. However, a so-called first-order second-moment(FOSM) approximation can be obtained as follows.

Given $X \sim\left(m_{X}, \sigma_{X}^{2}\right)$ and $Y=g(X)$, a generic nonlinear function of X , find the mean value and variance of Y.
\rightarrow Replace $g(X)$ by a linear function of X, usually by linear Taylor expansion around m_{X}. This gives the following approximation to $g(X)$:

$$
Y=g(X) \approx g\left(m_{X}\right)+\left.\frac{d g(X)}{d X}\right|_{m_{X}}\left(X-m_{X}\right)
$$

Then approximate values for m_{Y} and σ_{Y}^{2} are:

$$
m_{Y}=g\left(m_{X}\right), \quad \sigma_{Y}^{2}=\left(\left.\frac{d g(X)}{d X}\right|_{m_{X}}\right)^{2} \sigma_{X}^{2}
$$

(b) Random Vectors

- Second-Moment Characterization. Initial and Central Moments.

Consider a random vector \underline{X} with components $X_{1}, X_{2}, \ldots, X_{n}$.

- Expected value
$E[\underline{X}]=E\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]=\left[\begin{array}{c}E\left[X_{1}\right] \\ \vdots \\ E\left[X_{n}\right]\end{array}\right]=\left[\begin{array}{c}m_{1} \\ \vdots \\ m_{n}\end{array}\right]=\underline{m} \quad$ (mean value vector)
- Expected value of a scalar function of \underline{X}

Let $Y=g(\underline{X})$ be a function of \underline{X}. Then, extending a result given previously for functions of single variables, one finds that $E[Y]$ may be calculated as:

$$
E[Y]=\int_{R^{n}} g(\underline{x}) f_{\underline{X}}(\underline{x}) d \underline{x}
$$

Again, it is clear that linearity applies, in the sense that, for any given constants a_{1} and a_{2} and any given functions $g_{1}(\underline{X})$ and $g_{2}(\underline{X})$:
$E\left[a_{1} g_{1}(\underline{X})+a_{2} g_{2}(\underline{X})\right]=a_{1} E\left[g_{1}(\underline{X})\right]+a_{2} E\left[g_{2}(\underline{X})\right]$

- Expectation of some special functions
- Initial moments

1. Order 1: $\quad E\left[X_{i}\right]=m_{i} \Leftrightarrow E[\underline{X}]=\underline{m}, \quad i=1,2, \ldots, n$
2. Order 2: $\quad E\left[X_{i} X_{j}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{i} x_{j} f_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right) d x_{i} d x_{j}, \quad i, j=1,2, \ldots, n$
3. Order 3: $\quad E\left[X_{i} X_{j} X_{k}\right]=\ldots, \quad i, j, k=1,2, \ldots, n$

- Central moments

1. Order 1: $\quad E\left[X_{i}-m_{i}\right]=0, \quad i=1,2, \ldots, n$
2. Order 2 (covariance between two variables):

$$
\begin{aligned}
\operatorname{Cov}\left[X_{i}, X_{j}\right] & =E\left[\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right], \quad i, j=1,2, \ldots, n \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{i}-m_{i}\right)\left(x_{j}-m_{j}\right) f_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right) d x_{i} d x_{j}
\end{aligned}
$$

- Covariance in terms of first and second initial moments

Using linearity of expectation,

$$
\begin{aligned}
\operatorname{Cov}\left[X_{i}, X_{j}\right] & =E\left[\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right]=E\left[X_{i} X_{j}-X_{i} m_{j}-m_{i} X_{j}+m_{i} m_{j}\right] \\
& =E\left[X_{i} X_{j}\right]-m_{i} m_{j} \\
\Rightarrow E\left[X_{i} X_{j}\right] & =\operatorname{Cov}\left[X_{i}, X_{j}\right]+m_{i} m_{j}
\end{aligned}
$$

- Covariance Matrix and Correlation Coefficients

- Covariance matrix

$$
\begin{aligned}
\underline{\Sigma}_{\underline{X}} & =\left[\begin{array}{lll}
\operatorname{Cov}\left[X_{i}, X_{j}\right] & & \\
& \ddots & \\
& & (i, j=1,2, \ldots, n)
\end{array}\right] \\
& =E\left[\left(\underline{X}-\underline{m}_{\underline{x}}\right)\left(\underline{X}-\underline{m}_{\underline{x}}\right)^{T}\right]
\end{aligned}
$$

- For $\mathrm{n}=2$:

$$
\underline{\Sigma}_{\underline{X}}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \operatorname{Cov}\left[X_{1}, X_{2}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \sigma_{2}^{2}
\end{array}\right]
$$

$-\underline{\Sigma}_{\underline{X}}$ is the matrix equivalent of σ_{X}^{2}

- $\underline{\Sigma}_{\underline{X}}$ is symmetrical: $\quad \underline{\Sigma}_{\underline{X}}=\underline{\Sigma}_{\underline{X}}^{T}$
- Correlation coefficient between two variables

$$
\rho_{i j}=\frac{\operatorname{Cov}\left[X_{i}, X_{j}\right]}{\sigma_{i} \sigma_{j}}, \quad i, j=1,2, \ldots, n, \quad-1 \leq \rho_{i j} \leq 1
$$

- $\rho_{i j}$ is a measure of linear dependence between two random variables;
- $\rho_{i j}$ has values between -1 and 1 , and is dimensionless.

Joint density-function contours of correlated random variables. (a) Positive correlation $\rho>0$; (b) high positive correlation $\rho \approx 1$; (c) negative correlation $\rho<0$; (d) (e) low correlation $\rho \approx 0$; (f) large negative correlation $\rho \approx-1$.

- SM Propagation of Uncertainty for Linear Functions of Several Variables

Let $Y=a_{0}+\sum_{i=1}^{n} a_{i} X_{i}=a_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ be a linear function of the vector \underline{X}. Using linearity of expectation, one finds the following important results:

$$
\begin{aligned}
& E[Y]=E\left[a_{0}+\sum_{i=1}^{n} a_{i} X_{i}\right]=a_{0}+\sum_{i=1}^{n} a_{i} m_{i} \\
& \operatorname{Var}[Y]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} a_{i} a_{j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
\end{aligned}
$$

- For $n=2$:
$Y=a_{0}+a_{1} X_{1}+a_{2} X_{2}$
$E[Y]=a_{0}+a_{1} E\left[X_{1}\right]+a_{2} E\left[X_{2}\right]$
$\operatorname{Var}[Y]=a_{1}^{2} \operatorname{Var}\left[X_{1}\right]+a_{2}^{2} \operatorname{Var}\left[X_{2}\right]+2 a_{1} a_{2} \operatorname{Cov}\left[X_{1}, X_{2}\right]$
- For uncorrelated random variables:
$\operatorname{Var}[Y]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]$
- Extension to several linear functions of several variables

Let \underline{Y} be a vector whose components Y_{i} are linear functions of a random vector \underline{X}. Then, one can write $\underline{Y}=\underline{a}+\underline{B} \underline{X}$, where \underline{a} is a given vector and \underline{B} is a given matrix. One can show that:

$$
\begin{aligned}
& \underline{m}_{\underline{Y}}=\underline{a}+\underline{B} \underline{m}_{\underline{X}} \\
& \underline{\Sigma}_{\underline{Y}}=\underline{B} \underline{\Sigma}_{\underline{X}} \underline{B}^{T}
\end{aligned}
$$

- FOSM Propagation of Uncertainty for Nonlinear Functions of Several Variables

Let $\underline{X} \sim\left(\underline{m}_{\underline{X}}, \underline{\Sigma}_{\underline{X}}\right)$ be a random vector with mean value vector $\underline{m}_{\underline{X}}$ and covariance matrix $\underline{\Sigma}_{\underline{X}}$. Consider a nonlinear function of \underline{X}, say $Y=g(\underline{X})$. In general, m_{Y} and σ_{Y}^{2} depend on the entire joint distribution of the vector \underline{X}. However, simple approximations to m_{Y} and σ_{Y}^{2} are obtained by linearizing $g(\underline{X})$ and then using the exact SM results for linear functions. If linearization is obtained through linear Taylor expansion about $\underline{m}_{\underline{X}}$, then the function that replaces $g(\underline{X})$ is:
$g(\underline{X}) \approx g\left(\underline{m}_{\underline{X}}\right)+\left.\sum_{i=1}^{n} \frac{\partial g(\underline{X})}{\partial X_{i}}\right|_{\underline{X}=\underline{m}_{\underline{X}}}\left(X_{i}-m_{i}\right)$
where m_{i} is the mean value of X_{i}. The approximate mean and variance of Y are then:
$m_{Y}=g\left(\underline{m}_{\underline{X}}\right)$,

$$
\sigma_{Y}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} b_{j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

where $b_{i}=\left.\frac{\partial g(\underline{X})}{\partial X_{i}}\right|_{\underline{X}=\underline{m}_{\underline{X}}}$
This way of propagating uncertainty is called FOSM analysis.

