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1.010 - Brief Notes # 6 

Second-Moment Characterization of Random Variables and Vectors. 

Second-Moment(SM) and First-Order Second-Moment(FOSM) 

Propagation of Uncertainty 

(a) Random Variables 

. 

Second-Moment Characterization • 

• Mean (expected value) of a random variable 

E[X] = mX = xiPX (xi) (discrete case) 
all xi 

∞ 

= xfX (x)dx (continuous case) 
−∞ 

• Variance (second central moment) of a random variable 

σ2 = V ar[X] = E[(X − mX )2] = (xi − mX )2PX (xi) (discrete case) X

all xi


σ2 = 
∞ 

(x − mX )2fX (x)dx (continuous case) X 
−∞ 

• Examples 

Poisson distribution • 

(λt)y e−λt 

PY (y) = , y = 0, 1, 2, . . . 
y! 

mY = λt 

σ2 = 
∞

(y − λt)2PY (y) = λt = mYY

y=0
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• Exponential distribution 

fX (x) = λe−λx , x ≥ 0 

1 
mX = 

λ � �2 2� 1 1 
σ2 = 

0 
∞ 

x − 
λ

fX (x)dx = 
λ 

= m2 
X X 

Notation• 

X ∼ (m, σ2) indicates that X is a random variable with mean value m and variance σ2 . 

Other measures of location • 

• Mode x̃ = value that maximizes PX or fX 

• Median x50 = value such that FX (x50) = 0.5 

• Other measures of dispersion 

Standard deviation • 

σX = σ2 (same dimension as X) X 

Coefficient of variation • 

VX = 
σX (dimensionless quantity)

mX


• Expectation of a Function of a Random Variable. Initial and Central Moments. 

• Expected value of a function of a random variable 

Let Y = g(X) be a function of a random variable X. Then the mean value of Y is: 
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E[Y ] = E[g(X)] = 
∞ 

yfY (y)dy−∞ 

Importantly, it can be shown that E[Y ] can also be found directly from fX , as: 

E[Y ] = 
∞ 

g(x)fX (x)dx −∞ 

•	 Linearity of expectation 

It follows directly from the above and from linearity of integration that, for any constants a1 

and a2 and for any functions g1(X) and g2(X): 

E[a1g1(X) + a2g2(X)] = a1E[g1(X)] + a2E[g2(X)] 

•	 Expectation of some important functions 

1.	 E[Xn] = 
∞ 

xnfX (x)dx −∞ 

(called initial moments; the mean mX is also the first initial moment) 

2.	 E[(X − mX )n] = 
∞ (x − mX )nfX (x)dx −∞

(called central moments; the variance σ2 is also called the second central moment)X 

•	 Consequences of Linearity of Expectation. Second-Moment(SM) Propagation of 

Uncertainty for Linear Functions. 

1.	 σX 
2 = V ar[X] = E[(X − mX )2] = E[X2] − 2mX E[X] + mX 

2 = E[X2] − m2 
X 

E[X2] = σ2 + m2 ⇒ X X 

2. Let Y = a + bX, where a and b are constants. Using linearity of expectation, one obtains the 

following expressions for the mean value and variance of Y : 

mY = a + bE[X] = a + bmX


σ2 = E[(Y − mY )2] = b2σ2

Y	 X 
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•	 First-Order Second-Moment(FOSM) Propagation of Uncertainty for Nonlinear 

Functions 

Usually, with knowledge of only the mean value and variance of X, it is impossible to calculate mY 

and σY 
2 . However, a so-called first-order second-moment(FOSM) approximation can be obtained as 

follows. 

Given X ∼ (mX , σ
2 ) and Y = g(X), a generic nonlinear function of X, find the mean value and X 

variance of Y . 

Replace g(X) by a linear function of X, usually by linear Taylor expansion around mX . This→ 

gives the following approximation to g(X): 

(X − mX )= g(X) ≈ g(mX ) + 
dg(X)

Y 
dX mX 

Then approximate values for mY and σY 
2 are: �2 

σ2 
X 

dg(X)
σ2 = Y dX 

mY = g(mX ), 
mX 

(b) Random Vectors 

. 

Second-Moment Characterization. Initial and Central Moments. • 

Consider a random vector X with components X1, X2, . . . , Xn. 

•	 Expected value ⎤⎡⎤⎡⎤⎡ 
E[X1]X1 m1 

E[X] = E 
⎢⎢⎣ 

⎥⎥⎦ = 
⎢⎢⎣ 

⎥⎥⎦ = 
⎢⎢⎣ 

⎥⎥⎦ = m (mean value vector) . . . 
. . . 

. . . 
Xn E[Xn] mn 

•	 Expected value of a scalar function of X 

Let Y = g(X) be a function of X. Then, extending a result given previously for functions of 
single variables, one finds that E[Y ] may be calculated as: 
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E[Y ] = g(x)fX (x)dx

Rn


Again, it is clear that linearity applies, in the sense that, for any given constants a1 and a2 and 

any given functions g1(X) and g2(X): 

E[a1g1(X) + a2g2(X)] = a1E[g1(X)] + a2E[g2(X)] 

• Expectation of some special functions 

Initial moments • 
1. Order 1: E[Xi] = mi ⇔ E[X] = m, i = 1, 2, . . . , n 

2. Order 2: E[XiXj ] = 
∞ ∞ 

xixj fXi ,Xj (xi, xj )dxidxj , i, j = 1, 2, . . . , n −∞ −∞ 

3. Order 3: E[XiXj Xk] = . . . , i, j, k = 1, 2, . . . , n 

Central moments • 
1. Order 1: E[Xi − mi] = 0, i = 1, 2, . . . , n 

2. Order 2 (covariance between two variables):


Cov[Xi, Xj ] = E[(Xi − mi)(Xj − mj )], i, j = 1, 2, . . . , n

∞ ∞ 

= (xi − mi)(xj − mj )fXi,Xj (xi, xj )dxidxj 
−∞ −∞ 

Covariance in terms of first and second initial moments • 

Using linearity of expectation, 

Cov[Xi, Xj ] = E[(Xi − mi)(Xj − mj )] = E[XiXj − Ximj − miXj + mimj ]


= E[XiXj ] − mimj


E[XiXj ] = Cov[Xi, Xj ] + mimj
⇒ 
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Covariance Matrix and Correlation Coefficients • 

Covariance matrix • 

Cov[Xi, Xj ] 
⎤⎡ ⎢⎢⎣ 
⎥⎥⎦ΣX = . . . 

(i, j = 1, 2, . . . , n) 

)T ]x= E[(X − m )(X − mx

- For n = 2: 

σ2 Cov[X1, X2]ΣX = 1 

Cov[X2, X1] σ2
2 

- ΣX is the matrix equivalent of σ2 
X


- ΣX is symmetrical: ΣX = ΣT

X 

Correlation coefficient between two variables • 

Cov[Xi, Xj ]
ρij = 

σiσj 
, i, j = 1, 2, . . . , n, −1 ≤ ρij ≤ 1 

- ρij is a measure of linear dependence between two random variables; 

- ρij has values between -1 and 1, and is dimensionless. 
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• SM Propagation of Uncertainty for Linear Functions of Several Variables 

n

Let Y = a0 + aiXi = a0 + a1X1 + a2X2 + + anXn be a linear function of the vector X. Using 
i=1 

· · · 

linearity of expectation, one finds the following important results: 

n n

E[Y ] = E a0 + aiXi = a0 + aimi

i=1 i=1


n n n

V ar[Y ] = a2 
i V ar[Xi] + 2 aiaj Cov[Xi, Xj ]


i=1 i=1 j=i+1
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• For n = 2: 

Y = a0 + a1X1 + a2X2 

E[Y ] = a0 + a1E[X1] + a2E[X2] 

V ar[Y ] = a2 
1V ar[X1] + a2 

2V ar[X2] + 2a1a2Cov[X1, X2] 

• For uncorrelated random variables: 

V ar[Y ] = 
n

a
� 

i=1 

2 
i V ar[Xi] 

Extension to several linear functions of several variables • 

Let Y be a vector whose components Yi are linear functions of a random vector X. Then, one 

can write Y = a + B X, where a is a given vector and B is a given matrix. One can show that: 

mY = a + B mX 

ΣY = B ΣX B
T 

• FOSM Propagation of Uncertainty for Nonlinear Functions of Several Variables 

Let X ∼ (mX , ΣX ) be a random vector with mean value vector mX and covariance matrix ΣX . 
Consider a nonlinear function of X, say Y = g(X). In general, mY and σY 

2 depend on the entire 

joint distribution of the vector X. However, simple approximations to mY and σY 
2 are obtained by 

linearizing g(X) and then using the exact SM results for linear functions. If linearization is obtained 

through linear Taylor expansion about mX , then the function that replaces g(X) is: 

n

i=1 ∂Xi 

∂g(X) 
g(X) ≈ g(mX ) + (Xi − mi) 

X=mX 

where mi is the mean value of Xi. The approximate mean and variance of Y are then: 

mY = g(mX ), 
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σ2 
Y = bibj Cov[Xi, Xj ] 

�n n

i=1 j=1 

∂g(X)
where bi = 

∂Xi X=mX 

This way of propagating uncertainty is called FOSM analysis. 




