MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 - Brief Notes \#4
 Random Vectors

A set of 2 or more random variables constitutes a random vector. For example, a random vector with two components, $\underline{X}=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$, is a function from the sample space of an experiment to the $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ plane.

- Discrete Random Vectors

- Characterization
- Joint PMF of X_{1} and X_{2} :

$$
\mathrm{P}_{\underline{\mathrm{x}}}(\underline{\mathrm{x}})=\mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{P}\left[\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \cap\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right)\right]
$$

- Joint CDF of X_{1} and X_{2} :

$$
\begin{aligned}
\mathrm{F}_{\underline{\mathrm{X}}}(\underline{\mathrm{x}}) & =\mathrm{F}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{P}\left[\left(\mathrm{X}_{1} \leq \mathrm{x}_{1}\right) \cap\left(\mathrm{X}_{2} \leq \mathrm{x}_{2}\right)\right] \\
& =\sum_{\mathrm{u}_{1} \leq \mathrm{x}_{1}} \sum_{\mathrm{u}_{2} \leq \mathrm{x}_{2}} \mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)
\end{aligned}
$$

- Marginal Distribution
- Marginal PMF of X_{1} :

$$
\mathrm{P}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)=\mathrm{P}\left[\mathrm{X}_{1}=\mathrm{x}_{1}\right]=\sum_{\text {all } \mathrm{x}_{2}} \mathrm{P}\left[\left(\mathrm{X}_{1}=\mathrm{x}_{1}\right) \cap\left(\mathrm{X}_{2}=\mathrm{x}_{2}\right)\right]=\sum_{\text {all } \mathrm{x}_{2}} \mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

- Marginal CDF of X_{1} :

$$
\mathrm{F}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)=\mathrm{P}\left[\mathrm{X}_{1} \leq \mathrm{x}_{1}\right]=\mathrm{P}\left[\left(\mathrm{X}_{1} \leq \mathrm{x}_{1}\right) \cap\left(\mathrm{X}_{2}<\infty\right)\right]=\mathrm{F}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \infty\right)=\sum_{\text {all } \mathrm{x}_{2}} \sum_{\mathrm{u} \leq \mathrm{x}_{1}} \mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{u}, \mathrm{x}_{2}\right)
$$

- Continuous Random Vectors

- Characterization
- Joint CDF $\mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):$ same as for discrete vectors.
- Joint Probability Density Function (JPDF) of $\underline{\mathrm{X}}=\left[\begin{array}{l}\mathrm{X}_{1} \\ \mathrm{X}_{2}\end{array}\right], \mathrm{f}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$:

This function is defined such that:

$$
\mathrm{f}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{dx}_{1} \mathrm{dx}_{2}=\mathrm{P}\left[\left(\mathrm{x}_{1} \leq \mathrm{X}_{1}<\mathrm{x}_{1}+\mathrm{dx}_{1}\right) \cap\left(\mathrm{x}_{2} \leq \mathrm{X}_{2}<\mathrm{x}_{2}+\mathrm{dx}_{2}\right)\right]
$$

Relationships between $\mathrm{f}_{\mathrm{X}_{1}, \mathrm{X}_{2}}$ and $\mathrm{F}_{\mathrm{X}_{1}, \mathrm{X}_{2}}$:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\frac{\partial^{2} \mathrm{~F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}{\partial \mathrm{x}_{1} \partial \mathrm{x}_{2}} \\
& \mathrm{~F}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\int_{-\infty}^{\mathrm{x}_{1}} \int_{-\infty}^{\mathrm{x}_{2}} \mathrm{f}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) d \mathrm{u}_{1} d \mathrm{u}_{2}
\end{aligned}
$$

- Marginal distribution of X_{1}
- CDF: $\quad \mathrm{F}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)=\mathrm{F}_{\mathrm{X}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \infty\right)$
- PDF: $\quad \mathrm{f}_{\mathrm{x}_{1}}\left(\mathrm{x}_{1}\right)=\frac{\mathrm{dF}_{\mathrm{x}_{1}}\left(\mathrm{x}_{1}\right)}{\mathrm{dx}_{1}}=\frac{\partial \mathrm{F}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \infty\right)}{\partial \mathrm{x}_{1}}$

$$
\begin{aligned}
& =\frac{\partial}{\partial \mathrm{x}_{1}}\left(\int_{-\infty}^{\mathrm{x}_{1}} \mathrm{du}_{1} \int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \mathrm{du} \mathrm{u}_{2}\right) \\
& =\int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{u}_{2}\right) \mathrm{du}_{2}
\end{aligned}
$$

- Conditional PDF of $\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)$

$$
\begin{aligned}
\mathrm{f}_{\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}\right) & =\frac{\mathrm{f}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}{\mathrm{f}_{\mathrm{x}_{2}}\left(\mathrm{x}_{2}\right)} \\
& \propto \mathrm{f}_{\mathrm{x}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \text { for } \mathrm{f}_{\mathrm{x}_{2}}\left(\mathrm{x}_{2}\right) \neq 0
\end{aligned}
$$

- Conditional Distribution
- Conditional PMF of $\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)$:

$$
\begin{aligned}
\mathrm{P}_{\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}\right) & =\mathrm{P}\left[\mathrm{X}_{1}=\mathrm{x}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right]=\frac{\mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)}{\mathrm{P}_{\mathrm{X}_{2}}\left(\mathrm{x}_{2}\right)} \\
& \propto \mathrm{P}_{\mathrm{X}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

Example of discrete joint distribution: joint PMF of traffic at remote location (X in cars/30 sec. interval) and traffic recorded by some imperfect traffic counter (Y) (note: X and Y are the random variables X_{1} and X_{2} in our notation).

Example of discrete joint distribution: marginal distributions.
(a) Marginal PMF of actual traffic X, and (b) marginal counter response Y.

- Independent Random Variables

X_{1} and X_{2} are independent variables if:

$$
\mathrm{F}_{\mathrm{X}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{F}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right) \cdot \mathrm{F}_{\mathrm{X}_{2}}\left(\mathrm{x}_{2}\right)
$$

Equivalent conditions for continuous random vectors are:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{X}_{1}, \mathrm{x}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{f}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right) \cdot \mathrm{f}_{\mathrm{X}_{2}}\left(\mathrm{x}_{2}\right) \\
& \text { or: } \\
& \mathrm{f}_{\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}\right)=\mathrm{f}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)
\end{aligned}
$$

and for discrete random vectors:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{x}_{1}, \mathrm{X}_{2}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{P}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right) \cdot \mathrm{P}_{\mathrm{X}_{2}}\left(\mathrm{x}_{2}\right) \\
& \text { or: } \\
& \mathrm{P}_{\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2}\right)}\left(\mathrm{x}_{1}\right)=\mathrm{P}_{\mathrm{X}_{1}}\left(\mathrm{x}_{1}\right)
\end{aligned}
$$

Example of continuous joint distribution:
joint and marginal PMF of random variables X and Y .
(Note: X and Y are the random variables X_{1} and X_{2} in our notation)

