MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu.terms.

1.010 - Brief Notes \# 2 Random Variables: Discrete Distributions

- Discrete Distributions

- Probability Mass Function (PMF)

$$
P_{X}(x)=P(X=x)=\sum_{\text {all O: } X(O)=x} P(O)
$$

- Properties of PMFs

1. $0 \leq P_{X}(x) \leq 1$
2. $\sum_{\text {all } x} P_{X}(x)=1$

- Cumulative Distribution Function (CDF) $F_{X}(x)=P(X \leq x)=\sum_{u \leq x} P_{X}(u)$
- Properties of CDFs

1. $0 \leq F_{X}(x) \leq 1$
2. $F_{X}(-\infty)=0$
3. $F_{X}(\infty)=1$
4. if $x_{1}>x_{2}$, then $F_{X}\left(x_{1}\right) \geq F_{X}\left(x_{2}\right)$

Discrete distributions
(a) Probability Mass Function PMF
(b) Cumulative Distribution Function CDF

- Examples of discrete probability distributions
- Bernoulli distribution

$$
\left.\begin{array}{l}
Y=\left\{\begin{array}{l}
1, \text { if an event of interest occurs (success) } \\
0, \text { if the event does not occur (failure) }
\end{array}\right. \\
\mathrm{Y} \text { is called a Bernoulli or indicator variable }
\end{array}\right\} \begin{aligned}
& P_{Y}(y)= \begin{cases}p, & y=1 \\
q=1-p, & y=0\end{cases}
\end{aligned}
$$

- Geometric distribution

Sequence of Bernoulli trials
$\mathrm{N}=$ number of trials at which first success occurs

$$
\begin{aligned}
N & =1,2,3, \ldots \\
P_{N}(n) & =P(N=n)=(1-p)^{n-1} p \\
F_{N}(n) & =\sum_{i=1}^{n} P_{N}(i)=\sum_{i=1}^{n}(1-p)^{i-1} p=1-(1-p)^{n}
\end{aligned}
$$

Geometric Distribution

- Binomial distribution

Consider a sequence of Bernoulli trials
Let $\mathrm{M}=$ number of successes in n trials

$$
\begin{aligned}
& M=1,2,3, \ldots, n \\
& P_{M}(m)=\frac{n!}{m!(n-m)!} p^{m} q^{n-m} \\
& \text { where } \frac{n!}{m!(n-m)!}=\binom{n}{m}=\text { binomial coefficient }
\end{aligned}
$$

where p and $q=1-p$ are the probabilities of success and failure in individual Bernoulli trials

In particular, the probability of no success is:
$P_{M}(0)=q^{n}=(1-p)^{n}$
$P_{M}(0)=1-p n$, if $p n \ll 1$
and the probability of all successes is:
$P_{M}(n)=p^{n}$

Binomial distribution $B(n, p)$

- Poisson distribution

Assumptions:

1. In a time interval of short duration Δ, the probability of one occurrence is $\lambda \Delta$, where
$\lambda=$ occurrence rate (expected number of occurrences per unit time).
2. The probability of two or more occurrences in Δ is negligible.
3. The occurrences in non-overlapping intervals are independent.

Under these conditions, the number of occurrences in each interval of duration Δ is either 0 or 1 , with probability $p=\lambda \Delta$ of being 1 . Let $\mathrm{Y}=$ no. of occurrences in $[0, \mathrm{t}]$, where $t=n \lambda$. Then Y has binomial distribution with probability mass function
$P_{Y}(y)=\binom{n}{y} p^{y} q^{n-y}$, where $p=\lambda \Delta=\lambda \frac{t}{n}$
As $n \rightarrow \infty$,
$P_{Y}(y)=\frac{(\lambda t)^{y} e^{-\lambda t}}{y!} \quad$ (Poisson PMF)

Poisson distribution $\mathbf{P}\left(\lambda_{t}\right)$

