MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Brief Notes \#1 Events and Their Probability

- Definitions

Experiment: a set of conditions under which some variable is observed
Outcome of an experiment: the result of the observation (a sample point)
Sample Space, S: collection of all possible outcomes (sample points) of an experiment Event: a collection of sample points

- Operations with events

1. Complementation

2. Intersection

3. Union

- Properties of events

1. Mutual Exclusiveness - intersection of events is the null set $\left(A_{i} \cap A_{j}=\varnothing\right.$, for all $\left.i \neq j\right)$
2. Collective Exhaustiveness (C.E.) - union of events is sample space $\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}=S\right)$
3. If the events $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ are both mutually exclusive and collectively exhaustive, they form a partition of the sample space, S.

- Probability of events

- Relative frequency f_{E} and limit of relative frequency F_{E} of an event E

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{E}}=\frac{\mathrm{n}_{\mathrm{E}}}{\mathrm{n}} \\
& \mathrm{~F}_{\mathrm{E}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{f}_{\mathrm{E}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}_{\mathrm{E}}}{\mathrm{n}}
\end{aligned}
$$

- Properties of relative frequency (the same is true for the limit of relative frequency

1. $0 \leq \mathrm{f}_{\mathrm{E}} \leq 1$
2. $\mathrm{f}_{\mathrm{S}}=1$
3. $f_{(A \cup B)}=f_{A}+f_{B}$ if A and B are mutually exclusive

- Properties/axioms of probability

$$
\begin{aligned}
& \text { 1. } 0 \leq P(A) \leq 1 \\
& \text { 2. } P(S)=1 \\
& \text { 3. } P(A \cup B)=P(A)+P(B) \text { if } A \text { and } B \text { are mutually exclusive }
\end{aligned}
$$

- Two consequences of the axioms of probability theory

1. $P\left(A^{c}\right)=1-P(A)$
2. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$, for any two events A and B, $\Rightarrow P(A \cap B)=P(A)+P(B)-P(A \cup B)$

- Conditional Probability

Definition:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}
$$

Therefore, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ can also be obtained as $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$

- Total Probability Theorem

Let $\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ be a set of mutually exclusive and collectively exhaustive events and let A be any other event. Then the marginal probability of A can be obtained as:

$$
\mathrm{P}(\mathrm{~A})=\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{i}}\right)=\sum_{\mathrm{i}} \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right)
$$

- Independent events

A and B are independent if:
$P(A \mid B)=P(A)$, or equivalently if
$P(B \mid A)=P(B)$, or if
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$

- Bayes' Theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}) \frac{\mathrm{P}(\mathrm{B} \mid \mathrm{A})}{\mathrm{P}(\mathrm{B})}$
Using Total Probability Theorem, $\mathrm{P}(\mathrm{B})$ can be expressed in terms of $\mathrm{P}(\mathrm{A}), \mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$, and the conditional probabilities $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ and $\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{C}}\right)$:

$$
\mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})+\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}^{\mathrm{C}}\right)
$$

So Bayes' Theorem can be rewritten as:

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) \frac{\mathrm{P}(\mathrm{~B} \mid \mathrm{A})}{\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A})+\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}}\right) \mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}^{\mathrm{C}}\right)}
$$

