MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 - Mini-Quiz \#5
 (45 min - open books and notes)

Problem 1 (60 Points)

Two concrete beams have strengths X_{1} and X_{2} with joint normal distribution:
$\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right] \sim \mathrm{N}\left(\left[\begin{array}{l}3 \\ 3\end{array}\right],\left[\begin{array}{ll}1 & 0.75 \\ 0.75 & 1\end{array}\right]\right) \quad$ (in some appropriate units)
You intend to use beam 1 for construction. For structural competency, its strength must exceed 2 with probability at least 0.99 , i.e. $\mathrm{P}\left[\mathrm{X}_{1}>2\right] \geq 0.99$.
a. Find $\mathrm{P}\left[\mathrm{X}_{1}>2\right]$. If this value is less than 0.99 , beam 1 cannot be used, unless more information is obtained on its strength.
b. To get more information on X_{1}, you test the second beam.
c. What is the probability that, after testing the second beam, the first beam is found to be acceptable? Hint: First find x_{2}^{*} such that $\mathrm{P}\left[\mathrm{X}_{1}>2 \mid \mathrm{X}_{2}=\mathrm{x}_{2}^{*}\right]=0.99$. Then calculate $\mathrm{P}\left[\mathrm{X}_{2}=\mathrm{x}_{2}^{*}\right]$.

Problem 2 (40 Points)

The strength X of a concrete batch has normal distribution $X \sim N\left(m, \sigma^{2}\right)$ where σ is known ($\sigma=1000$ psi (pounds per square inch)) but m is uncertain with normal distribution $\mathrm{m} \sim \mathrm{N}\left(5000 \mathrm{psi},(800 \mathrm{psi})^{2}\right)$. To better constrain m , you test 4 concrete cylinders in the lab from which you obtain the sample average $\overline{\mathrm{X}}=\frac{1}{4} \sum_{\mathrm{i}}^{4} \mathrm{X}_{\mathrm{i}}$. Notice that $\overline{\mathrm{X}}$ has distribution $\overline{\mathrm{X}} \sim \mathrm{N}\left(\mathrm{m}, \frac{\sigma}{4}^{2}\right)$ and that it can be thought of as a noisy measurement of $\mathrm{m}, \overline{\mathrm{X}}=\mathrm{m}+\varepsilon$, where $\varepsilon \sim \mathrm{N}\left(0, \frac{\sigma}{4}^{2}\right)$.

Suppose that you measure $\bar{X}=6000$ psi. Find the mean value and variance of (m| $\overline{\mathrm{X}}=6000 \mathrm{psi}$).

