MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
1.010 Fall 2008

Homework Set \#10
Due December 4, 2008 (in class)

1. Random variables X_{1}, \ldots, X_{50} are independent with the following distributions:

$$
\begin{aligned}
& X_{1}, \ldots, X_{10} \sim \mathrm{U}[0,1] \\
& X_{11}, \ldots, X_{20} \sim \mathrm{~N}(1,0.1) \\
& X_{21}, \ldots, X_{30} \sim \operatorname{LN}(3,0.2) \\
& X_{31}, \ldots, X_{40} \sim \operatorname{Ex}[0.4] \\
& X_{41}, \ldots, X_{50} \sim \operatorname{Ga}(2,0.2)
\end{aligned}
$$

where $\mathrm{U}[0,1]$ is the uniform distribution in $[0,1], \mathrm{N}\left(m, \sigma^{2}\right)$ and $\mathrm{LN}\left(m, \sigma^{2}\right)$ are the normal and lognormal distributions with mean value m and variance $\sigma^{2}, \operatorname{Ex}[m]$ is the exponential distribution with mean value m, and $\mathrm{Ga}(n, m)$ is the gamma distribution that results from adding n iid exponential variables with distribution $\operatorname{Ex}[m]$. Find in approximation the probability that $Y=\sum_{i=1}^{50} X_{i}$ exceeds 56 .
2. The daily SO_{2} concentration at a given location is normally distributed with mean 0.03 ppm (parts per million) and coefficient of variation 40%. Clean air standards require that: a) the daily SO_{2} concentration does not exceed 0.06 ppm , and b) the weekly average SO_{2} concentration does not exceed 0.045 ppm . Assuming that SO_{2} concentrations in different days are statistically independent, determine which of the above criteria is more likely to be violated. Would correlation between daily concentrations lead you to a different conclusion? Explain using qualitative arguments.
3. Water flow into a reservoir is contributed by two rivers. During the spring season, the flows from the rivers, Q_{1} and Q_{2}, the water demand Y, and the stored water volume in the reservoir at the beginning of the season S have multivariate normal distribution

$$
\left[\begin{array}{c}
Q_{1} \\
Q_{2} \\
Y \\
S
\end{array}\right] \sim \mathrm{N}\left(\left[\begin{array}{c}
12 \\
8 \\
25 \\
10
\end{array}\right],\left[\begin{array}{cccc}
5^{2} & 8 & 5 & 3 \\
8 & 4^{2} & 5 & 2.5 \\
5 & 5 & 5^{2} & 0 \\
3 & 2.5 & 0 & 2^{2}
\end{array}\right]\right)
$$

where Q_{1}, Q_{2}, Y and S are in million cubic feet. At the beginning of one spring season $S=8$. Find the probability of not meeting demand at the end of the season, i.e. find $P\left[\left(Q_{1}+Q_{2}-Y \mid S=8\right)<-8\right]$.

