1.010 Uncertainty in Engineering Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 Fall 2008 Homework Set #6 Due October 28, 2008 (in class)

1. A chain has 10 links. The strengths of the links, X_1, \ldots, X_{10} are independent and identically distributed random variables with exponential PDF

$$f_{x}(x) = e^{-x}, x \ge 0$$

Find and plot the PDF of the strength of the chain $S = \min\{X_1, X_2, ..., X_{10}\}$. Is the distribution of *S* also exponential?

2. At a certain location storms arrive as a Poisson point process with rate λ =70 storms/year. The rainfall intensity *I* of each storm has CDF

$$P[I \le i] = F_I(i) = 1 - e^{-0.067i}, i \ge 0$$

where i is in mm/hour. Assuming independence among the storm intensities, find the probability that the yearly maximum rainfall intensity exceeds 100mm/hour. [Read application example 11.]

3. U_1 and U_2 are independent random variables with uniform distribution in [0,1]. Find the CDF of $Y = U_1 + U_2$. Then differentiate $F_y(y)$ to find the PDF, $f_y(y)$. [Hint: To find $F_y(y)$, sketch the region Ω_y on the (U_1, U_2) plane where $Y \le y$.]