MIT OpenCourseWare
http://ocw.mit.edu

1.010 Uncertainty in Engineering

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
1.010 Fall 2008

Homework Set \#4
Due October 9, 2008 (in class)

1. Calculate and plot the hazard function for the lifetime distribution shown below.

2. Read Application Example 7 and do the following:

For a given suburb of Boston and a certain route, the commuting time D depends on traffic conditions T and weather W. Specifically, the random variable ($D \mid T, W$) has exponential distribution with parameter λ that depends on T and W. The probability of various combinations of T and W and the associated values of $\lambda\left(\right.$ in $\left.\min ^{-1}\right)$ are:

\boldsymbol{W}	\boldsymbol{T}	$\boldsymbol{P}[\boldsymbol{T} \boldsymbol{W}]$	$\boldsymbol{\lambda}\left(\mathrm{min}^{-1}\right)$	
good	light	0.25	$1 / 30$	
good	normal	0.40	$1 / 35$	
good	heavy	0.15	$1 / 55$	
bad	light	0.03	$1 / 35$	
bad	normal	0.07	$1 / 42$	
bad	heavy	0.10	$1 / 70$	
		$\sum=1.00$		

Find the probability density function of $D, f_{D}(d)$, using a relation analogous to Eq. 2 of Application Example 7. Plot this density function. Is it an exponential density? Calculate the unconditional probability that $D>40$ minutes?
3. The joint probability mass function of precipitation depth $X(\mathrm{~mm})$ at a raingauge station and flow $Y\left(\mathrm{~m}^{3} / \mathrm{s}\right)$ of a nearby river is as follows:

	$X=25$	$X=50$	$X=75$
$Y=2$	0.05	0.12	0
$Y=4$	0.11	0.30	0.10
$Y=6$	0	0.12	0.20

a) Find the marginal PMFs of X and Y.
b) If the raingauge indicates a precipitation of 50 mm , what is the probability that the flow exceeds 4 $\mathrm{m}^{3} / \mathrm{s}$?

