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Application Example 17 

Sums of iid Random Variables 

Central Limit Theorem 

The Central Limit Theorem establishes that, when properly normalized, the sum of n 

independent and identically distributed (iid) random variables Xi  (i = 1, 2, …, n) with finite 

variance approaches the standard normal distribution as n → ∞. The standard normal distribution 

has zero mean value and unit variance and probability density function (PDF) given by:   
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fZ(z) = e 2 , -∞ < z < ∞ (1)
2π 

The Case with Finite n 

In practice, n is finite and the question arises whether n is large enough to assume that the sum 

has normal distribution. The rate at which the probability density function of the normalized sum  
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nσX

approaches the function in equation (1) depends on the distribution of X and the region of the 

distribution one considers. Convergence is usually fast near the mean value but may be slow in 

the tail regions, especially when the distribution of X is highly skewed. 

To illustrate convergence, we consider the cases when  X has uniform or exponential 

distribution. 

1. Uniform Distribution 

Suppose that X has uniform distribution in the interval [-0.5, 0.5]. In this case the mean value and 

variance of X are mX = 0 and (σX)2 = 1/12, and the normalized sum Zn in equation (2) is: 
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Since ∑ Xi ranges from –0.5n to 0.5n, the PDF of Zn is 0 outside the interval [-
i=1 

For X uniformly distributed, the distribution of Zn in equation (3) does not have known 

analytical form but can be obtained numerically, as follows. Consider first the case n = 2. The 

PDF of Y2 = X1+X2 is given by 

∞ 

fY2
(y)=⌡⌠ fX(x) fX(y-x)dx (4) 

-∞ 

Integrals of the type in equation (4) are called convolution integrals. A convenient way to 

evaluate such integrals is to work with the characteristic function of X, φX(t), which is defined as 

the Fourier transform of fX: 

∞ 

φX(t) = ⌡⌠ fX(x)e-ixt dx (5) 
-∞ 

with inverse transform 

fX(x) = 2
1 
π ⌠⌡

∞ 

φX(t)eixt dt (6) 
-∞ 

One can show that the characteristic function of Y2 in equation (4) is simply the square of the 

n 
characteristic function of X. More in general, the characteristic function of Yn = ∑ Xi is the nth 

i=1 

power of the characteristic function of X: 

φYn
(t) = [φX(t)]n (7) 

Hence, a simple way to obtain the distribution of Zn is to: (a) find φX(t), either analytically or 

numerically, (b) raise φX(t) to the nth power, (c) take the inverse Fourier transform to obtain fYn
, 

and (d) find fZn
(z) through: 

fZn
(z) = nσX fYn

( nσX z +nmX) (8) 



We have used this method to obtain the PDF of Zn in equation (3) for different n. Figure 1 

compares fZn
 with the standard normal PDF in equation (1), for n = 2, 5, 10, and 20. For each 

value of n, the results for fZn 
are shown in both arithmetic scale (left column) and log scale (right 

column). From the arithmetic plots, it appears that convergence to the normal density is achieved 

already for n = 5 and definitely for n = 10. However, this is true only up to about 3 or 4 standard 

deviations away from the mean. As the log plots show, beyond this central region the 

distributions of Z and Zn are still different and one needs larger values of n for convergence. 

Notice that these extreme tail regions are associated with very small values of the PDF, and 

hence very small exceedance probabilities. 

2. Exponential Distribution 




 

Suppose now that X has exponential distribution with PDF 

n 

∑ 



 

fX(x) = e -x , x ≥ 0 (9) 

In this case mX = (σX)2 = 1 and, using equation (2), Zn is given by 

Xi  – n 
i=1 

Zn = (10)

n

n 
The PDF of Zn can be found analytically, as follows. We know that the sum Yn =∑
Xi has 

i=1 

gamma distribution with density 

y n -1 e -y 

fYn
(y) = (n-1)!  , y ≥ 0 (11) 

Then, using results for distributions of linear functions, the PDF of Zn in equation (10) is 

n
fZn

(z) = (n-1)! (n+ nz)n -1 e
-(n+ nz)

 , z ≥ - n (12) 

Figure 2 compares the density in equation (12) with the density in equation (1) for n = 2, 10, 20, 

130. Convergence to the normal distribution is slower than in the case of the uniform 



distribution. The reason is that the exponential distribution is highly skewed and one needs a 

large n to “undo” that skewness. This is especially clear from the log plots.  

Problem 17.1 

(a) Notice that, if X has uniform distribution, Z2 has symmetrical triangular distribution. Using 

the results in Figure 1, discuss how large n should be for convergence to the normal 

distribution in the range [-3, 3] if X has symmetrical triangular distribution. 

(b) Computers usually simulate normally distributed variables as the sum of 12 uniformly 

distributed variables. See what equation (3) becomes for n = 12. Suppose now that you need 

to accurately reproduce the tail of the normal distribution up to about 5 standard deviations 

from the mean. Using Figure 1, estimate a reasonable value of n that would give you the 

desired accuracy. How could you use the normal variable simulator of the computer (which 

uses n = 12) to simulate normal variables that meet your higher-accuracy criterion? 
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Figure 1: Comparison of the distributions of Zn (solid lines) and Z (dashed lines) for different n, 

for the case when X has uniform distribution. The plots on the left are in arithmetic scale, 

whereas the plots on the right are in log scale and emphasize the tail regions of the distributions. 
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Figure 2: Comparison of the distributions of Zn (solid lines) and Z (dashed lines) for different n, 

for the case when X has exponential distribution. The plots on the left are in arithmetic scale, 

whereas the plots on the right are in log scale and emphasize the tail regions of the distributions. 


