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Spring 1977


Problem Set #4 

1. The corners of a cube are numbered 1, 2, 3, 4 clockwise around the top face of the cube, and 5, 6, 7, 8 

clockwise around the bottom face, corner 5 lying under corner 1, corner 6 under corner 2, and so on. A face 

center is denoted by the two numbers of the corners between which a face diagonal can be drawn which passes 

through that face center (for example, either 13 or 24 would denote the center of the top face). 

(a) The structures of several kinds of AB4 molecules are described as follows with the above numbering 

system. The A–atom is placed at the center of the cube, and the A—B bond distances are given by the 

cube dimensions. However, the B–atoms are not necessarily all equivalent, the actual equivalence being 

determined by the symmetry elements remaining in the AB4 structures. 

(i) AB4(1, 2, 3, 4) 

(ii) AB4(1, 3, 5, 7) 

(iii) AB4(1, 3, 6, 8) 

(iv) AB4(1, 5, 16, 18) 

(v) AB4(13, 36, 68, 18) 

Give the point-group symbol for each AB4 structure (for example, C3v, D6h, and so on). 

(b) Classify the five molecules of Part (a) as to type of molecular rotator (linear, symmetrical top, and so 

on). 

(c) Which of the five molecules of Part (a) will give a pure-rotational spectrum in the far-infrared or mi­

crowave region? Which will give a pure-rotational Raman effect? 

2. The harmonic oscillator (mass m) in two dimensions has a potential energy V expressed in polar coordinates r, 

θ, of the general form 2V = k1r2 cos2 θ + k2r2 sin2 θ, where k1 and k2 are force constants. For the special case 

k1 = k2 = k, the oscillator has a single frequency v = (k/m)1/2/2π, and its Schrödinger equation has solutions 

of the form � � 
−αr2 

ψv,� = Nv,� exp exp(i�θ)P(r)
2 

where v, � are quantum numbers (v = 0, 1, 2, . . . , ∞; ±� = 0, 2, 4, . . . , v for v even, ±� = 1, 3, 5, . . . v for v odd); 

Nv,� is a normalization constant; α = 4π2mv/h; P(r), a polynomial in r only, depends for its form on the values 

of v and � and is an even function for even v, odd for odd v. 
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(a) The energy levels of this two-dimensional oscillator are Ev = (v + 1)hv. What is the degeneracy of the 

v–th level? 

(b) Find Nv,� for v = 1, � = +1, for which P(r) = α1/2r. 

(c) Show that any two ψ’s of the same v but different � are orthogonal. 

(d) Find the average value of the angular momentum pθ for any state v, �. 

(e) Find the average value of r−2 for the state v = 1, � = +1. 

Substitute the results of the above in the equation for the relationship between E and pθ in the plane rotor 

and find E for the state v = 1, � = +1. Explain the difference between this value of E and that given by the 

equation of Part (a). 

3. The carbon suboxide molecule C3O2, is believed to be linear and symmetrical. 

(a) Classify the normal vibrations of C3O2 according to the symmetry species of point group D∞h. 

(b) How many polarized lines should appear in the vibrational Raman spectrum? How many fundamental 

infrared bands should have P–, Q–, and R–branches? 

4. Suppose that there are two possible structures for ethylene, planar D2h and nonplanar D2d. 

(a) Work out the infrared-active and the Raman-active vibrational species for each point group. 

(b) Work out the distribution of fundamental vibrational frequencies among the different species of the two 

structures and compare the results. What would you look for spectroscopically to decide between the 

two structures? 

(c) What kind of rotational fine structure would you expect in the vibrational infrared bands of the D2h 

model? What kind for the D2d model? 

5. Make a complete analysis of the spectrum of BF3 given below and prove the symmetry of the molecule. 

(Chemical evidence gives a start.) 

B11F3 B10F3 Raman IR 
480.4 cm−1 482.0 cm−1 m s 
691.3 719.5 — s 
888.0 888.0 s — 

1445.9 1497.0 — vs 
1831.0 1928.0 — w 
2903.2 3008.2 — w 

Note that the 888 cm−1 band has the same value for both isotopic species. This is a critical point in clinching 

the symmetry. 
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6.	 (a) Let ψa ≡ ψv1=1(Q1)ψv2=0(Q2) and ψb ≡ ψv1=0ψv2=2 be the normalized harmonic-oscillator wave functions 

of a polyatomic molecule corresponding to excited vibrational states of unperturbed energies Ea and Eb. 

If these two states are in Fermi resonance, second-order non-degenerate theory can be applied. Assume 

that the interaction energies H� and H� are zero and that H� arises from one or more anharmonic aa bb	 ab 

terms in the potential function. In a certain molecule, the levels ψa and ψb are observed to be in Fermi 

resonance, the transitions to the perturbed levels being observed at 1400 and 1500 cm−1, whereas the 

level ψv1=0ψv2=1 has an energy of 740 cm−1 above the zero level (see diagram). Deduce the unperturbed 

Ea–value from the above data (H� is to be evaluated from the data, not by integration). ab 

(b) The intensity of the Raman line for the transition from the ground state ψ0,0 to the unperturbed state ψa 

in the absence of Fermi resonance is proportional to the square of the matrix element ����� ����� ψa 
∂α 

ψ0,0 Q1
∂Q1


where ∂α/∂Q1 is a non-zero constant. The corresponding matrix element
����� ����� ψb 
∂α 

ψ0,0 Q2
∂Q2 

is zero because Δv2 = 2. Find the ratio of the intensities of the two Raman lines for the transitions from 

state |ψ00� to the perturbed states |ψA� and |ψB�. 


