5.73 Lecture #18 18 - 1

Variational Method
(See CTDL 1148-1155, [Variational Method]
252-263, 295-307[Density Matrices])

Last time:
Quasi-Degeneracy — Diagonalize a part of infinite H
* sub-matrix : HO + H®
* corrections for effects of out-of-block elements: H?
(the Van Vleck transformation)
*diagonalize H* =H©® + H® + H®

coupled H-O’s 2 : 1 (0,=2m,) Fermi resonance example: polyads

1. Perturbation Theory vs. Variational Method

2. Variational Theorem

3. Stupid nonlinear variation

4. Linear Variation — new kind of secular Equation

5. Linear combined with nonlinear variation

6. Strategies for criteria of goodness — various kinds of variational
calculations

1. Perturbation Theory vs. Variational Method

Perturbation Theory in effect uses «basis set

goals: parametrically parsimonious fit model, Heff
fit parameters (molecular constants) <> parameters that define V(x)

order - sorting o < 1 — errors less than thi.s “mixing
E 7 —Ey angle” times the previous order

non—zero correction term

(n 1s in-block, k is out-of block) because diagonalization is o order
(within block).

Variational Method

* best possible estimate for lowest few E_, vy, (and properties derivable from
these) using finite basis set and exact form of H.
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Vast majority of computer time in Chemistry is spent in variational calculations
Goal is numbers. Insight is secondary.
“Ab Initio” vs. “semi-empirical” or “fitting”
[intentionally bad basis set: Hiickel, tight binding —
qualitative behavior obtained by a fit to a few microscopic—like
control parameters]

2. Variational Theorem

not necessarily
. )

If ¢ is approximation to eigenfunction of A

any observable

belonging to lowest eigenvalue a(, then

(9lAlg)
(09)

PROOF: eigenbasis (which we do not know — but know it must exist)
Aln) =ay[n)

expand ¢ in eigenbasis of A, exploiting completeness

|0)= Zln) (n|¢)

(olalo) - z<¢\n>§@a8mé<n'

o the variational Theorem

’

n,n n “nn
eigenbasis

(¢]¢)= <¢\n (n|o) zw\n\

<¢|A|¢>_n afolof
(¢]9) g\<nf\¢>\2

=3 |¢[n)a,

o= all terms 1n both sums are >0

subtract ag from both sides
2
> (a, —ag)[(n|o) o .
a—ag=-" 2 20 Eg‘?}llns’uamstz'reni 1On
> [(n’[9) )
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because, by definition of a,, a, > a, for all n and all terms in sum are .. > 0.

. but useless because we
SO0 ag.
0 QED (can’ t know a,, or (n|¢>)

It is possible to perform a variational calculation for any A, not limited to H.

3. Stupid Nonlinear Variation
Use the wrong functional form or the wrong variational criterion to get poor
results — illustrates that the variational function must have sufficient
flexibility and the variational criterion must be as it is specified in the
variational theorem, as opposed to a clever shortcut.

The H atom Schr. Eq. (¢ =0)

H-= >S5 -
2r“odr or r
L 1 L 1
T A%
Yo, (r) = <r|ls> = V2"
and we know )
E,=-1/2au |1 au=219475cm™|
3 1/2 & normalized
but try (r]¢) = [g /2n] (Er)e for all &

€ 1s a scale factor that controls overall size of ¢(r)

[actually this is the form of y, (r)] which is necessarily orthogonal to v, ! STUPID!

(60 =0 but  yy (="

_ <¢|H|¢> _ i[éz - 35} skipped a lot

<¢ ‘ ¢> 3 8 of algebra
e .. de
TMINIMIZE €: d—§=0 gmin :3/2%8min =-3/8 au

1
FAILURE! {c.f. the true values: E;, =-1/2au, E,, = —gau}
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Try somethng clever (but lazy):
What is the value of & that maximizes (¢ 1s)?

for the best variational & =3/2, Cj; = (6(&=3/2)|1s)=0.9775
if we maximize Cj, wrt. & : £=5/3— C), =0.9826 better?

but ¢ =-0.370 results, a poorer bound than § = 3/2 — ¢ =-0.375
* need flexibility in ¢
de

dg

This was stupid anyway because we would never use the
variational method when we already know the answer!

* can@improve on — by employing an alternative variational strategy

4. Linear Variation — Secular Equation

N KEY
¢= DcnXn TOPIC for
n=1 this lecture
<)Cn |H|Zn’> = Hnn'
overlap integrals
<Zn ‘%n’> = Snn’ (non-orthogonal basis sets are often
convenient)
2 c,c,H .
_ <¢|H|¢> _ nn’ e

rearrange this equation

RO e

_ to find minimum value of €,
€ 2 CmCmSmm’ = 2 CnCnHpp’
m,m’ n,n’ J . .

’ ’ take — for each j and require that

ac].

o€

P 0 for eachj [linear variation!
J

because we are seeking to minimize € with respect to each c;.
Find the global minimum of the &(c,,c,,...cy) hypersurface.

. d .
the only terms that survive — are those that include ¢

. j’
C;
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€ CmlSmi tSim ) =2 cnlHiy + Hy;
% m( w Jm) % n( n nJ) These are all of the surviving terms

= H. (i.e. those that include j). Each j term
v appears twice in both sums, once as a
bra and once as a ket.

if {)(n} are real S;;=Sy, H

j i
N

0= zcn(Hjn - SSJ'H)
n=1

one such equation for each j (same set of unknown {c,})

N linear homogeneous equations in N unknown c s
Non trivial {c } only if |[H—€eS| =0
(Not same form as |H— 1E| =0)

The result is N special values of € that satisfy this equation.

CTDL show: all N ¢, values are upper bounds to the lowest N E ’s

and all {¢_}’s are othogonal! (provided that

they belong to
different
How to solve |[H—-€S| =0 values of E_)
1. Diagonalize S
UTSU = S ‘§IJ = sl-Sl-j
(orthogonalize {)} basis)
2. Normalize S
~ -1/2
=172 ~ j\—1/2 =
(87785 =1 =s='st < 51 0 0
R (§—1/2 )— _§12_| g 12
3 diagonal where T =US""/2 :
matrices 0 O

This is not an orthogonal transformation, but it does not destroy
orthogonality because each function is only being multiplied by a
constant.
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3. Transform H to orthonormalized basis set

ﬁ _§-12 (USHU)i_l /2 U diagonalizes S
I—TI T not H
T

new secular equation

|ﬁ-g§:o b s=1

|ﬁ_ el

=0 usual H diagonalized by
usual procedure!

5. Combine Linear and Nonlinear Variation

typically done in ab initio electronic structure calculations

Basis set: Xn(&n r) linear variation where € is a radial scale factor

y= %cnxn(éni

nonlinear variation

Snn’ (&n’ E:n’ )’ Hnn’(&n’ én’)

0. pick arbitrary set of {&;}

L. calculate all Hij(éi’éj) & Sij(éi’ §J)
2. Solve [H-€S|=0

a. S-S diagonalize S (orthogonalize)
\—1/2 _

b. (S) (normalize)

c. H-— ﬁ

d. diagonalize ﬁ

nonlinear variation begins — find global minimum of .
with respect to each &
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5. changet; from &0 -2 =0 43
4. recalculate all integrals in H and S involving
5. Solve ‘H - SS‘ =0 to obtain a new set of {Si}.
Pick lowest ;.
6. calculate a‘glowest — gfggvest - Sﬂ)ev‘\lzvest
&, };50) _ é(ll)

7. repeat #3 — 6 for each & (always looking only at lowest €;)
This defines a gradient on a multidimensional €(&;,...Ey) surface. We

seek the minimum of this hypersurface. Take a step in direction of
steepest descent by an amount determined by |0de/0& .. ;| (small slope,

small step; large slope, large step).

This completes 1st iteration. All values of {€}are improved.
8. Return to #3, iterate #3-7 until convergence is obtained.

Nonlinear variations are much slower than linear variations.
Typically use ENORMOUS LINEAR {y} basis set.

Contract this basis set by optimizing nonlinear parameters (exponential scale
factors) in a SMALL BASIS SET to match the lowest {0}’s that had initially

been expressed in large basis set.

modified 10/9/02 10:21 AD



5.73 Lecture #18 18 - 8

6. Alternative Strategies

* rigorous variational minimization of E, . .: “ab initio”

* constrain variational function to be orthogonal to specific subset of functions

e.g. orthogonal to ground state — to get variational convergence.
Applies only to higher members of specific symmetry class
or orthogonal to core: frozen-core approximation.

“Pseudopotentials” (use some observed energy levels to
determine Z*ff(r) of frozen core)

* least squares fitting

minimize differences between a set of measured energy levels (or other
properties) and a set of computed variational eigen-energies (or other
properties computed from variational wavefunctions).

{observed En} “ {parameters in Heff}

molecular constants

U

experimental y ‘s in finite
variational basis set

* semi-empirical model

replace exact H by a grossly simplified form and restrict basis set to a simple
form too.

Then adjust parameters in H to match some observed pattern of energy

splittings. Use parameters to predict unobserved properties or use values of
fit parameters to build insight.
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