
Outline for Second Lecture on Numerical Kinetic Models 

How does CHEMIN work?

Very short intro to Numerical solution of ODE’s

Overview: What are we trying to accomplish in Kinetics?!

Difference between measuring kinetics in the real system, and measuring rate constants

in designed experiments.

Implications of reactive intermediates.


How does CHEMKIN work? 

Reads chem.inp, surf.inp. Computes thermo (and any other needed properties) for all the 
species, and computes the reverse rate constants from the thermo. Most of the 
computations are simple, mostly what this program is doing is parsing the input deck and 
putting everything in the right format for the next steps. In the old versions, this is called 
Ckinterp, since it “interprets” the input deck. 

Reads aurora.inp 
Sets up a program that returns F(Y), the right hand side of the ODE (or DAE) system, 
using all the rate constants and molecular properties computed in the first step. Then it 
calls VODE or DASSL or similar to solve the equations. 

Postprocessor: Takes the table of yn(ti) computed by VODE and pulls out the columns 
you want, and plots them. 

How are ODE’s solved numerically? (the short short version) 

If we define Y={yi, T} and there is no transport, then Eq.(1) is of the form: 

dY/dt = F(Y) and we usually know the initial conditions: Y(to)=Yo 

The general procedure is to step forward in time with some formula 

Y(t+∆t) = Y(t) + G(Y) ∆t  Eq.(3)  

where G is our best estimate of the average of F(Y(t’)) over the trajectory from Y(t’=t) to 
Y(t’=t+∆t), using lots of little timesteps ∆t until we reach tfinal. In the simplest 
approximation called Forward (or Explicit) Euler G=F(Y(t)). This turns out to be pretty 
inaccurate (just like the rectangle rule is not a very accurate way to compute numerical 
integrals) and also numerically unstable unless ∆t is very small. Note that with the 
Forward Euler, the relative error in ∆Y is  ½  d2Y/dt2 ∆t / F,  and  d2Y/dt2 = J  F,  so  the  
relative error could be as large as ½ λmax ∆t = ½  ∆t/τshortest. 

The fundamental problem is that we don’t know the trajectory Y(t’) – all we can do is 
extrapolate to estimate Y(t’) at future times. The extrapolation at each timestep 

http://web.mit.edu/10.652/www/ODENumericalInstability.pdf


introduces a little bit of error, and then the extrapolation at the next timestep is built on an 
incorrect starting point and an incorrect estimate of the slope G(Y). If one is not careful, 
the errors can cumulate in a very unfavorable way, making the whole procedure 
numerically unstable (even if the ODEs and the physical situation they describe is 
perfectly stable). Stability considerations indicate that for explicit methods (where G 
depends only on values of Y you have already computed) you want ||I+J∆t|| < 2, again 
saying you need ∆t/τshortest < 1  to  be  safe.  

There are two general ways of coping with this. One is to use relatively simple 
estimates of G and just use tiny timesteps ∆t much smaller than any of the physical 
timescales in the system. This general approach is called “explicit”, the most famous 
algorithms that work this way are called “Runge-Kutta” methods. The alternative 
approach is to use very complicated methods for estimating G that are guaranteed to be 
numerically stable, these are called “implicit” methods because in these methods G is a 
function of Y(t+∆t), so Eq.(3) becomes an implicit (usually) nonlinear system of 
equations, very difficult to solve. The hope is that by improving the numerical stability, 
one could use large ∆t’s and so reduce the number of timesteps required to reach tfinal. 

The difficult aspect of chemical kinetics is that one often has reactive 
intermediates with lifetimes 1012 times shorter than the relatively inert starting materials. 
The short lifetimes of the reactive species force ∆t in the explicit methods to be extremely 
small, so then a huge number of timesteps (and a correspondingly huge amount of CPU 
time) are required before the starting materials are consumed significantly. When the 
range of timescales is very large, the ODE system is called “stiff”. Most important 
situation is when you want to know the system behavior on a relatively long time scale 
many orders of magnitude larger than τshortest. Stiffness introduces many numerical 
problems, even for implicit ODE solvers; several algorithmic tricks must be used 
simultaneously in order to solve stiff systems without introducing huge numerical errors. 

A key idea for dealing with stiff systems is “adaptive time stepping”, where the 
ODE solver decides after each step whether to increase or decrease ∆t for  the next step.  
Stiff solvers usually start with very small step sizes and repeated computations of the 
Jacobian, but when everything is going fine they do a great job of extrapolating forward 
in time and so can use very large ∆t and the same Jacobian over and over without 
introducing significant errors. This sometimes causes problems, if something dramatic 
happens in the equations at a particular time, e.g. in combustion/oxidation systems the 
chemistry changes very abruptly with the O2 is all consumed, this can cause VODE to 
fail. One of the diagnostics from VODE and DASSL lists the number of “step failures”, 
this shows where the program realized its extrapolation was not accurate enough, and it 
had to back up to a smaller Dt (and usually also recomputed the Jacobian). 

The first algorithm that could correctly handle stiff ODE systems was discovered 
by William Gear in the 1970’s. The best programs now available for solving large stiff 
ODE systems are VODE, DASSL/DASPK, and DAEPACK. I believe the current version 
of CHEMKIN calls VODE and DASSL. 

http://web.mit.edu/10.652/www/Stiffness.pdf


What is the overall goal of Kinetics? 

a) Develop Predictive Models for Y(t) for important systems (e.g. atmosphere, 
combustion, chemical reactors, biological systems) 

b) To understand the fundamental elementary step chemistry (in large part to aid 
goal (a)) 

dY/dt = F(Y,K) 

The real systems usually have lots of species and unknown rate constants, so Y and K are 
big arrays. Experimentally, we can typically either measure one or two species as a 
function of time, or measure several species at a fixed time (by end product analysis). 
Most of the time we cannot measure enough species to determine any of the rate 
constants. There are many more rate constants than species, so almost never could one 
determine all the rate constants even if one could measure all the species. 

So instead of studying the real system, we set up artificial laboratory systems, where the 
rate constant(s) we want to determine very strongly influence the handful of 
measurements we can make. 

Implications of Reactive Intermediates: 

In real system, usually in steady state and low concentration, very difficult to detect and 
very difficult to infer k’s from them. Consider A B C quasi steady state. 

Very difficult to get absolute concentrations 

Solution: pseudo-first-order, make artificially high concentrations of reactive 
intermediate and watch system relax. 


	Outline for Second Lecture on Numerical Kinetic Models

