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ROBERT FIELD: Now if you looked at today's notes, you'll notice that they're very long and very complicated.

And that's not intended to be intimidating. It's just to show you the power of perturbation

theory. So we have talked about the two-level problem. The two-level problem is one that's

exactly solved. It's one of our favorite exactly solved problems, although it doesn't seem to

have any physical relevance. It's just a nice numerical exercise.

So we can take a two by two Hamiltonian and exactly diagonalize it. And that's done using a

unitary-- or actually, in the case that we looked at, orthogonal-- transformation. And so it's a

rotation in state space. And the rotation angle is an explicit function of the parameters in the

Hamiltonian.

Now all good things come to an end. We cannot do this for anything more than a two-level

problem. But we can take the formalism for the two-level problem and say, oh, well, we can

describe a transformation that diagonalizes the end level problem. And it has the same

property of being unitary.

But the good thing about it is it's solved by a computer. You tell a computer what the operator

is, and it will diagonalize it. And not only will it diagonalize it, but it will give you the eigenvalues

and the eigenvectors. It gets those eigenvectors by applying the same two level unitary

transformation many, many times.

So if you have a six-level problem or a hundred-level problem, the computer just cranks and

cranks on each two by two and does transformations. And it keeps doing that until the off

diagonal matrix element is small-- remaining off diagonal matrix element-- is small compared

to the difference in energy between the eigenvalues it connects.

And so you tell it, I want this convergence criterion to be a part in a hundred or a part in a

million. And it just does this and does this. And eventually, it gives you the transformation and

the eigenvalues. So that means that it doesn't matter how big the problem is. You just have to

have a computer that's patient or fast. And it will crank out the results. Now you need to know



how to use the t matrices, or the t dagger matrix, because these things enable you to solve

basically any problem in time independent quantum mechanics and a lot of problems in time

dependent quantum mechanics.

So there is another way, and that's going to solve an n-level problem. And that's the subject of

this lecture and the next lecture. It's called non-degenerate perturbation theory. Now our goal-

- well, let's ask. I'm a spectroscopist. What do spectroscopists do? Now, there's a silly, stupid

answer to that. I want something a little more profound. Yes?

AUDIENCE: Find energy levels?

ROBERT FIELD: Yeah, we record spectra. We get energy levels. And we get intensities. We get all sorts of

things. We could also be working in the time domain, and we could we could be looking at

some kind of quantum beating system or some decaying system. We make these

measurements.

But this is not why we do it. Remember, yes--

AUDIENCE: All spectra have buried information about the physical parameters of the system.

ROBERT FIELD: Exactly, exactly-- that's what's kept me going for my entire career. I use the word encoded

rather than buried. But I like that. I might start using buried as well. Yes, we're not allowed to

look inside of small things. We're not allowed to determine the wave function by any

experiment. But we are able to observe the energy levels and properties of the Hamiltonian.

And we can regard the Hamiltonian as a fit model, a model where there are adjustable

parameters which are the structural parameters, like the force constants and the reduced

masses and whatever we need to describe everything in this problem.

And today's lecture is mostly going to be on the interactions between normal modes of a

polyatomic molecule. Now you might ask, why am I doing this rather than talking about just an

ordinary, anharmonic oscillator. And the reason is, I'm going to do that in the next lecture. And

it's in your problem sets. You're going to do that. So I'm going to show a little higher order of

information.

So we go from what we can observe to a representation of it, which we call the effective

Hamiltonian, where in this effective Hamiltonian we have determined the values of all of the

important structural parameters. And from that, we can calculate everything, everything that



we could possibly observe, including things we didn't observe.

So it's really powerful. It's a way of taking the totality of observations that you're going to make

and saying, yes, I have looked inside this molecule. And I've determined everything that I'm

allowed to determine. And I can calculate the wave function. The wave function is an

experimentally determined wave function, but only indirect.

This is amazingly powerful. And basically, everybody who deals with spectra is doing this

whether they know it or not. And so I want to be able to give you the tools to be able to take

any arbitrary spectrum and extract from it the crucial information.

In the last lecture, we talked a little bit about matrix mechanics, and that involved linear

algebra. And you have a wonderful handout on linear algebra, which will give you more than

enough to be able to do any quantum mechanical problem we're going to be facing in this

class. And there is notation. And the notation is unfamiliar, and you have to learn how to use it.

And so we have for example-- the analogy to the Schrodinger equation in matrix language--

where we have the Hamiltonian, an eigenvector, an eigenvalue, and this eigenvector. So it's

an eigenvalue or eigenvector equation. And this is the form of the Schrodinger equation and

we can pretend that it is the real Schrodinger equation. And we can use the standard

approaches, but it's useful to work in matrix notation.

So we can solve for the energy levels, and we can solve for basically all of the eigenvectors.

And our friend is this unitary transformation where t dagger is equal to t inverse. And t times t

inverse is equal to this thing 1111100, or the unit matrix. I thought I saw a hand up. That was

just-- that was not serious.

And so these unitary transformations have this special convenient property. And we use these

t daggers and ts to diagonalize the Hamiltonian. Now this is just a little bit of review. So how

did we derive the thing that we are going to solve?

Well, we took this equation and we inserted 1 between the Hamiltonian and the vector. And

then this is 1. So we don't need to put it over here. And then we left multiply by t dagger, and

we put parentheses around things. So this is now what we were calling h tilde. And this is c

tilde. And this is now an equation that says, OK, we can transform the Hamiltonian into

diagonal form-- E1, En, zeros. And when we have this in diagonal form, we can say, well, this

equation is just E1, 100 et cetera. So for any eigenvalue, we have an eigenvector.



Now what we'd really like to know is, well, how do we get these eigenvectors from the unitary

transformation that diagonalizes H. We don't calculate this unitary-- yes?

AUDIENCE: Is that i or--?

ROBERT FIELD: This is a 1, this is a 1, this is a 1.

AUDIENCE: I mean in your c tilde, third from the top.

ROBERT FIELD: That's a j. This is a particular eigenvalue, and this is the eigenvector in that. Now it's easy for

me to get screwed up, and it's easy for you to wonder, what the hell am I doing, until you've

done it. And then it's completely transparent. It's really quite simple. But it's just this extra

notation.

And so it's possible to show-- and I don't want to do it. I did it last time. You can show-- and

this is important-- that this transformation t dagger c equals c. Do I want?-- above, above. This

is telling you that the columns of t dagger are the eigenvectors. They are linear combination of

the basis vectors that correspond to each eigenvector. And you can look at this in more detail

in the notes.

Now this is great because mostly you want to know what the eigenvectors are for a particular

eigenvalue. But sometimes, when you're doing dynamics, you prepare, not an eigenvector, but

you prepare a t equals 0, a basis state. This is the most common, doable problem, and it's

also something that one does in experiments.

You can set up a problem so that, with a short pulse, you prepare the system at t equals 0 in

something that's not an eigenstate. And usually it's a basis state-- it's one of the eigenvalues

of an exactly solved problem. But your problems are not exactly solved ones, but your

experiment selects that. And this, not being an eigenstate, needs to be expressed as a linear

combination of eigenstates so that you can actually calculate this, which will describe how the

system is behaving.

And I like asking exam problems like this because it's easy to get hopelessly involved in

ordinary algebra rather than just using linear algebra. So if this is the transformation to the

eigenbasis, then the columns of t are the transformation back to the 0 order bases. And the

columns of t are the rows of t dagger.

Now why should you care? Because you don't know how to calculate the elements of the t



matrices yet, but that's what perturbation theory is for. With perturbation theory, it doesn't

matter that the computer could solve for the t and t dagger matrices. But there's no insight.

You just get the numbers. I like to say that spectroscopy is not about creating archival tables of

observed transitions and observed transition intensities. It's about understanding how things

work.

And so depending on whether you're doing a time domain experiment or frequency domain

experiment, you're going to want to use either the columns of t dagger or the rows of t dagger.

Now at some point in your life, you have to be exposed to non-degenerate perturbation theory

because it is really powerful. But it's also incredibly ugly.

So we have a whole bunch of problems-- I'll go over here-- that are related to the particle in a

box or the particle in an infinite box or the harmonic oscillator. And so one of the things that

you might do is round off the corners because physical systems don't have discontinuities.

Well, that's going to be a very modest change to the energy levels and wave functions.

Another thing you might do is have a barrier, and you could put the barrier anywhere. What

does the barrier or an extra well do? Or you could do something like this.

So the particle-in-a-box is a whole family of problems that you could solve using perturbation

theory by saying, OK, the extra stuff is the perturbation. And we have to work out the matrix

elements of the Hamiltonian that correspond to these extra things and then figure out what to

do to get the eigenvalues and eigenfunctions.

Now, for the harmonic oscillator-- again, you could put a barrier in the middle or you could

make it an asymmetric like almost all molecular potentials are, where this is dissociation and

this is two closed cells colliding with each other and doing very hard repulsion. And so that is

harmonic near the bottom, but it's not harmonic elsewhere.

And so how do you represent this? And the Morse oscillator is a cheap way of generating

something with this shape and then doing the perturbation theory to understand how the

nonharmonic aspect of the Morse can affect the energy levels. Or how did the energy levels

determine, say, the association energy of this molecule? How is that dissociation energy

encoded in the energy level pattern?

Now for polyatomic molecules, if you have n atoms, there are 3n minus 6 vibrational normal

modes. Well, how do I know that? n atoms, there's 3n degrees of freedom. There's 3



translations and 3 rotations. And so that leaves 3n minus 6. And all of that is vibrations. So we

have many normal modes, and it's not too surprising that, if you stretch one normal mode, it'll

affect the frequency of another. And we'd like to know that.

And so perturbation theory is really valuable for polyatomic molecules. And that's the bulk of

the examples that I worked in the non-lecture notes for this lecture. But there's also dynamics.

So you prepare some initial state of t equals 0 and you want to know how it's evolving. But

often that initial state is an eigenstate of one of the exactly solved problems. And you want to

be able to re-express that in terms of the eigenstates of the real problem. And so you want to

know C J-- I'm sorry. You want to know J, CJ eigenstates.

So once you have this, then you know how to write the time dependent wave function because

you are dealing with eigenstates and they have eigenenergies. And so you just write this thing

out. It's just mechanical and boring. It's also true that molecules rotate. And when they rotate,

there's centrifugal force and their internuclear distances change. And we can then calculate

how that will affect the rotational energy levels using perturbation theory.

And then there's the origin of life. Gases are not supportive of life. You need two particles to

come together and start to condense into a liquid. That's the beginning. Perturbation theory

explains the long range interactions by which all gas phase particles attract each other weakly.

So that's important too. And so you'll be able to do all of this stuff.

So here we have non-degenerate perturbation theory. And it is a mind numbing, formal

derivation. So we start out with this rotary equation. And we say, well, let us expand the

Hamiltonian. And let's put a little thing here. This is our friend. This is an exactly solved

problem. This is what's new, and this is what's new and small. And we could probably neglect

it. And we do the same thing to the energy levels.

So these are the energy levels for the exactly solved problem. And these are the energy

levels-- the first order corrected energy levels. And these are the second order corrected

energy levels. And we do the same thing for the wave function.

Now we write the Schrodinger equation with these three term expressions. Now I'm also going

to say, we're never going to consider this one either. So life is simpler without them, but in the

notes, I included them all. And so what we do is now we write the full equation and we sort it

into sub equations corresponding to powers of lambda.



So the lambda to the 0 equation is really easy. It's just H0 psi 0 is equal to E0 psi 0. We could

put n's on this. And this is the exactly solved problem. It says, yeah, you build your foundation

from the lambda to 0 equation, and it's just what you know already. And what you're going to

do is now use the psi n 0 and en 0 to do everything else.

The lambda to the one equa-- well, you might ask, well, what is lambda. It's just a

mathematical trick. It has no significance whatsoever. It's a smallness parameter, but it's also

something where you can say, these equations will be true for any value of lambda. And so it's

just a way of separating the equations into things that have a structure that you can

manipulate. People have waxed eloquent about the meaning of lambda, and it really doesn't

have any meaning.

So the lambda to the 1 equation-- well, we collect terms on the left hand side that have 1

lambda and on the right hand side. And so the lambda to the 1 equation is going to be, say,

H0 psi 1 is equal to E0 psi 1. I'm sorry. There's more to it than that. There's four terms.

We're just collecting the terms that have 1 lambda on the left-hand side and right-hand side.

And we've got this equation. What are we going to do with it? Well, one thing we can do with it

is multiply on the left. Let's just put some indices here. So we have n, n, n.

We're going to multiply on the left and integrate by psi n 0. So we're going to get a bunch of

terms. So we will have psi n 0 H 0 psi n 1 plus psi n 0 H 1 psi n 0. We have integral, integral.

And on the left hand side, we have E n 0 integral psi n 0 psi n 1. And we have E 1 psi n 0 psi n

0.

Well, this is kind of an ugly term. It's a psi 0 and a psi 1. But we know that H, when operating

on psi 0, gives E 0. So we're going to get E n 0 integral psi n 0 psi n 1-- same two over here.

Cancel them. And so we get a simple equation that is just H1 n n is equal to E1 n. So we've

gotten now the diagonal matrix element of the perturbation term is equal to the first-order

correction to the energy.

And we can continue. The algebra isn't beautiful, but we end up getting the following

equations. We have E n 1 is H 1 nm. We have psi n 1 is m not equal to n psi m 0 H nm. So

what did I do here? I said, the wave function-- we have completeness. So if we want the first

order corrections to the nth wave function, we can write this as a linear combination of the

zero order wave functions.



And when we do that, we end up with this formula. This is the mixing coefficient, and these are

the state-- now why do I exclude n? Because we already have it. And then we get the second-

order correction to the energy, which is m not equal to n h n m 1 H m n 1 over En 0. That's it.

That's all we need.

Now it does say non-degenerate perturbation theory. And so it's subject to the requirement

that H1 n m over E n minus E m. So if the energy denominator is near 0, we know we're in

trouble. But for the vast majority of energy levels, this term is much less than 1. And so that

means we can deal with all of the interactions among the non-degenerate levels in one fell

swoop.

Now this is an infinite sum, and this is an infinite sum. So we don't like infinities. But we can

say, all right, here's the Hamiltonian. It's an infinite Hamiltonian. And we're interested in this

little corner of it. And so all of the interactions among these states with all of the infinite others

get subsumed into this infinite sum. It's a small number.

And then we're just interested in this little subspace of the energy levels that we're sampling in

our experiment. So the molecule more or less tells you how to focus on the part that you care

about and to get rid of the stuff that is of no trouble whatsoever. And it just contaminates the

wave functions a little bit. And if you wanted to know what that contamination is, you could deal

with it.

So this is the tool that you can use to solve, basically, any problem involving molecules with a

potential like a harmonic oscillator at the bottom. But it's usable for all problems, but there's a

different basis set rather than the harmonic oscillator basis set. So this is your handy dandy

key. And you don't need a computer, although when you see the horrible complexity that will

result when you start dealing with these sums, you will say, well, I do want to use a computer.

But now it's up to me to organize the program so that you can ask the computer to do what

you need in a sensible way and you still get good answers.

So in the notes, I'm dealing with a two-mode molecule. There are no two-mode molecules.

There's one-mode molecules, and there might be three or four or six or whatever. But the

complexity is the interaction between two modes. And so we're going to talk about that.

So we have for a two-mode molecule-- the Hamiltonian will consist of Hamiltonian for mode 1,

Hamiltonian for mode 2, and the Hamiltonian for modes 1 and 2, interacting with each other.

Well, we know these. These are just ordinary harmonic oscillator. And we've got to do some



work on this. And that's where perturbation theory comes in.

So H12-- and we know, if this weren't here, we know that the energy levels are that some of

the energy levels for the two independent oscillators and the wave functions are the products.

So even though the energy levels have two quantum numbers, V1 and V2, and the wave

functions have two quantum numbers, V1 and V2, if it were only this, we'd have completely

solved that problem.

But because of this, there's something else. So these then turn out to be the zero order states

that you use to evaluate all the integrals here. And we have these and A and A dagger

operators, which are enabling us to-- we have the operator for coordinate x is proportional to A

plus A dagger. And this has a selection rule, delta V of plus and minus 1.

So we like these things because we don't have to do any integrals. They're all done for you.

And so we're then going to use these sorts of things to deal with the most important terms

beyond harmonic. And so there's a cubic and there is a quartic.

And although you haven't really explored this, what happens when you make dimensionless

coordinates? You factor out something. And if you have cubic terms, they're 100 times smaller

than quadratic terms. And the quartic terms are 100 times smaller than the cubic terms. And

so you don't need to go much further.

So the cubic terms for the two oscillators would be 1/2 K 122 Q1 Q2 squared plus 1/2 K 112 Q

1 squared Q2. And you could have Q1 cubed, but we already deal with that in the single-mode

problem. So we won't worry about that. So these are the couplings between modes 1 and 2

that are cubic. And then we have 1/4 k 112 Q 1 squared Q 2 squared. There's also a Q1 Q2

cubed, and those terms usually are not important because they mostly are dealt with under

here.

So anyway, these are the parameters, and these are the things that you need in order to

understand what this molecule is going to do when it's excited. Now when I was a graduate

student, there was a great deal of excitement about doing what's called mode-specific

chemistry. Ordinary compounds cost on the order of $1 a kilogram. But if you could do mode

specific chemistry, you could make things that aren't makeable by ordinary, organic chemistry.

And the organic chemists would love this because it's a load of garbage because these guys

make the modes talk to each other. And so even if you could excite a pure overtone or



combinational level, the energy moves around the molecule. And that's called intermolecular,

vibrational redistribution. And those there are processes that you could talk about the primary

paths for the energy to flow and the rates. And that was a major area of research for the last

30 years. And most people are tired of it.

But it started out being IVR, yeah, anything can happen. It's statistic or whatever. But no, only

specific things can happen, and they're controlled by these specific coupling terms. And you

could calculate them. Now there's an interesting other thing. I told you that the first-order

correction to the energy is equal to a diagonal matrix element of the correction term to the

Hamiltonian.

All of the second-order terms involve squares of matrix elements. The second-order terms you

don't know the signs. If there is a first-order correction, you get the sine. And sometimes you

know you want to know: is the perturbation like that or the perturbation like that? Is there a

barrier or an extra well? And this enables you to know that in second-order perturbation theory

when you have to square the matrix element, all that information is concealed.

Well, anyway-- so there is a huge amount of algebra that's involved in using these equations.

And I don't really want to go through that algebra. You can read my notes. I think the chances

of you reading those notes are small. But if I don't lecture on them, it would be slightly greater.

It's a complete treatment of a two-mode problem with all of the possible and harmonic terms

cubic and quartic. And everything worked out.

Now the trick is, you could easily say, well, the algebra is just so horrible. Why would I bother?

But what you do is you take these terms and you sort according to selection rule. So for

example, here we have a selection rule delta V1 is plus or minus 1 and delta V2 is plus or

minus 2 and 0.

And so there are then six possible selection rules associated with these sorts of terms. And

what you want to do is do the algebra that combines all this horrible stuff according to

selection rule that leads to simplification of the formulas. And then once you've got everything

sorted according to selection rule, then you can calculate what happens.

I can't promise that I will never give you a two-mode problem on an exam, but I can promise I

will give you a one-mode problem. And so you want to really know how to do these sorts of

things. So non-degenerate perturbation theory works when the energy denominator is large

compared to the coupling matrix element.



And accidents occur when you have, say, a situation where omega 1 is approximately equal to

2 omega 2. Now this isn't just blowing smoke. This happens an amazing number of times

because stretches are higher frequency than bends. And it's very common for the bending

modes to be roughly half or one third the frequency of a stretching mode.

And so you get a resonance. So this is special because now it's violating the fundamental

approximation of non-degenerate perturbation theory. But it's a two-level interaction. And so

you can say, I know how to do a two-level problem. I can solve that. And these resonances

have names. There is a Fermi and there is a Darling-Dennison. The Fermi resonance was

discovered and understood by Fermi. And it has to do with CO2. Omega 1 in CO2 is

approximately twice omega 2. The symmetric stretch and the bend are in Fermi resonance.

So what happens then? Suppose we have a level that involves V1, V2, V3. And nearby there is

a level V1 minus 1 V2 plus 2 V3. And because of the energy denominators, these two guys are

nearly degenerate. So what happens is one gets shifted up, one gets shifted down a little bit.

And they're out of the expectation of smooth behavior.

And it might also be that this state is what we call bright and this is called dark. This state

might be connected by an allowed transition from a lower-- an initial state and this might not.

So the levels repel because they're interacting and they're out of position. And this guy is

supposed to be bright. We're supposed to see a transition in the spectrum. And this one-- well,

it should have been somewhere else. But we shouldn't see it because it's dark. It's forbidden.

But because of the interaction between these two levels, the eigenstates have mixed

character. And you get both level shifts and extra lines. This is called a spectroscopic

perturbation. This is the core of everything I've done for the last 45 years-- spectroscopic

perturbations.

And so you can learn about some of these coupling terms because, instead of hiding in the

forest of these small corrections, you get a big effect. And it's easy to observe and it's easy to

determine each coupling term from these resonances.

And the last thing I want to talk about today is a little bit of philosophy. This is why, among

spectroscopists or physical chemists, there are two communities-- communities that like small

molecules and communities that like big molecules, because they're really different. For the

small molecule community, you have this accidental resonance and you get this sort of thing.



For big molecules, you have a resonance with a dense manifold of levels. All of these levels

share, say, the character of the dark state. And so they can all interact with this guy.

And so in this case, you get the main transition in an extra line. In this case, if you have low

resolution, you get a broadened line. And if you have high enough resolution, you see that

there is a whole bunch of eigenstates under it. And if it's a large enough molecule, you couldn't

resolve them anyway.

And so some people are always dealing with fast IVR, fast dephasing of the bright transition

into a dark manifold. And other people are always looking at these sorts of things. Now I like

these because they really give you a lot of information. Now you can get the information you

want from this because the width of this thing is related to the number of dark states and their

average coupling matrix element. That's called Fermi's golden rule. We'll talk about that later.

So I think there's a pretty good place to stop because what I try to do is to show you, yes, it

can be really complicated. But it's something that you can do, and you can project out the

coupling constants that you want in order to determine the stuff that is relevant to your

experiment. But then there is this dichotomy between small molecules where the vibrational

density of states is always smaller until you get to really high energy.

And bigger molecules-- now they're not very big. Benzene is plenty big for this sort of thing.

And there is the question. For example, in some big molecules, when you excite an electronic

transition from the ground state to some excited state-- so here's S0, S1. Sometimes you can't

see any fluorescence from S1 because the dephasing is so fast that there's nothing.

And so it says, well, tough luck. You can't do spectroscopy in emission. But you can still see

the absorption spectrum because then your signal is the removal of photons from your beam

as opposed to fluorescence. So there's a huge amount of photochemistry and interesting stuff

connected with a large density of states.

And again, when I was a graduate student, there was a huge controversy about non-radiative

transitions in medium sized molecules. And there was one community that says, the collisions

which transfer population between levels are so fast that, in order to turn off this broadening,

you had to go to really low pressure because then there wouldn't be collisions.

And the answer, whenever somebody failed to see sharp spectra, was, well, you're not at low

enough pressure. But this has nothing to do with collisions. And that got resolved by two



gentlemen called Bixon and Jortner. Those are two names that any educated physical chemist

will know to say, oh, that's the Bixon-Jortner. And they're still alive. They're still doing beautiful

stuff. But anyway, that's all I want to say today. I will do details on one mode and Morse

oscillator in other sorts of things next time.


