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Lecture #16 Supplement: Non-Degenerate Perturbation Theory III 
 

What is Perturbation Theory good for? 
 

1. Computing the effects (pattern of energy levels, relative transition intensities in a 
spectrum, intramolecular dynamics) of a distortion of the potential energy 
function from an idealized form. 
* add a barrier to particle in a box or harmonic oscillator 
* include intra-mode vibrational anharmonicity (wave packet dynamics, effects on 

molecular constants ωe, ωexe) 
* include inter-mode vibrational anharmonicity (IVR, spectroscopic perturbations, 

non-radiative decay) 
 
2. Computing the mechanism for the flow of energy between different internal 

degrees of freedom is encoded in the energy level structure. 
 

3. Computing how the internuclear distance dependence of a molecular property is 
manifest in the experimentally observable quantum number dependence of that 
quantity.  One example, the subject of this lecture, is the rotational “constant” 
operator, B(R). 

 
 
Centrifugal Distortion (D) and Vibration-Rotation Interaction (α) 
Constants 
 

E v, J( ) = hc Be −αe v +1/ 2( )[ ]J (J +1)− hcDe[J (J +1)]
2

 
 
This lecture will illustrate two surprising tricks exploited by spectroscopists: 
 

• It is possible, by observing the “pure rotation” spectrum (microwave spectroscopy) to 
measure a rotational quantity, the centrifugal distortion constant De, that provides an 
accurate measure of the harmonic vibrational frequency, ωe. 

 
• When the vibrational potential energy function, V(Q), is expanded in a power series in 

the displacement coordinate, Q, perturbation theory seems to tell us that we cannot 
determine the sign of the coefficients of odd powers of Q.  However, we can often obtain 
this sign from a cross term between rotation and vibration. 

 
The effective potential is given by 
 



5.61 Fall 2017 Lecture 16S Page 2 

revised 10/30/17 2:37 PM 

V Q( ) = 1
2
kQ2 + 1

6
aQ3 + hcB(R)J (J +1)  

 
First we must express B(R) as a power series in Q.  (This is an example of how we would 
determine the dependence of any R-dependent quantity on the vibrational quantum number, v.) 
 

 

B(R) = 
2cµ

1
R2 cm−1[ ]

ωe =
1
2πc

k
µ

⎡
⎣⎢

⎤
⎦⎥

1/2

cm−1[ ]
 

 

 

R ≡Q+ Re do a power series expansion of 1
R2 = 1

Re
2 1+Q Re( )2

B(Q) = Be 1− 2Q
Re

+ 3Q2

Re
2 +…

⎡

⎣
⎢

⎤

⎦
⎥

Q =


4πµcωe

⎡
⎣⎢

⎤
⎦⎥

1/2

a + a†( )

 

 

 

2Q
Re

=
4h

4πcµωeRe
2

⎡
⎣⎢

⎤
⎦⎥

1/2

a + a†( ) = 4Be

ωe

⎛
⎝⎜

⎞
⎠⎟

1/2

a + a†( )

3Q2

Re
2 = 3Be

ωe
a + a†( )2

⎫

⎬
⎪
⎪

⎭
⎪
⎪

from B(Q)

1
6

aQ3 = a
6

h
4πcµωe

⎡
⎣⎢

⎤
⎦⎥

3/2

absorb all of these constants
temporarily into the fit
parameter, A

 
(a + a† )3 = A(a + a† )3 from V(Q)

 

 
A is a constant, the sign of which is the same as that of a in aQ3. 
 
We are ready to begin to treat this problem by perturbation theory. 
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EvJ
(0 ) = vJ |H(0 ) | vJ = hcωe (v +1/ 2)+ hcBeJ (J +1)

H(1) = hcBeJ (J +1) −
4Be
ωe

⎛
⎝⎜

⎞
⎠⎟
1/2

a + a†( )+ 3Be
ωe

a + a†( )2
⎡

⎣
⎢

⎤

⎦
⎥ +A(a + a† )3

∆ v = ±1 ∆ v = 0,±2 ∆ v = ±1,±3

 

 
We begin by computing Evj

(1) : 
 

EvJ
(1) = vJ |H(1) | vJ = hcBeJ (J +1)

3Be

ωe

(2Nv +1)⎡
⎣⎢

⎤
⎦⎥

from ∆ v = 0( )

EvJ
(1) = hcBeJ (J +1) 6Be

ωe

(v +1/ 2)

αe = − 6Be
2

ωe

.

 

 
This is the harmonic contribution to the vibration-rotation constant, αe.  Note that αe < 0, thus Bv 
increases as (v + ½).  We expect the vibrational excitation would on average lengthen R, thus 
cause Bv to decrease with v.  But the harmonic contribution exhibits the opposite behavior.  
WHY? 
 
Now we look at the effects of the ∆v ≠ 0 matrix elements on EvJ. 
 
∆v = ±1 matrix elements, from both (a + a†) and (a + a†)3 terms in H(1): 
 

 

v (a + a† ) v +1 = (v +1)1/2

v (a + a† ) v −1 = v1/2

(a + a† )3 = a3
∆ v=−3
 + a†3

∆ v=+3
 + 3(a2a† − a)

∆ v=−1
   + 3(a†2a + a† )

∆ v=+1
  

 

v (a + a† )3 v +1 = v 3(a†2a + a† ) v +1 = 3(v +1)3/2

v (a + a† )3 v −1 = v 3(a2a† − a) v −1 = 3v3/2
 

We are going to get a cross-term in EvJ
(2 )  between the hcBeJ(J + 1) 

4Be
ωe

⎛
⎝⎜

⎞
⎠⎟
1/2

 and A(a + a†)3 

terms. 
 
∆v = ±2 
 

v (a + a† )2 v + 2 = (v + 2)(v +1)[ ]1/2

v (a + a† )2 v − 2 = v(v −1)[ ]1/2
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∆v = ±3 
 

 
v (a + a† )3 v+ 3 = (v+ 3)(v+ 2)(v+1)[ ]1/2

v (a + a† )3 v− 3 = (v− 2)(v−1)v[ ]1/2
 

 
Some algebra: 

Evj
(2 ) = hcBeJ(J +1)[ ]2 4Be

ωe

⎛
⎝⎜

⎞
⎠⎟

v+1
−hcωe

+ v
hcωe

⎡
⎣⎢

⎤
⎦⎥

−2 hcBeJ(J +1)[ ] 4Beωe

⎛
⎝⎜

⎞
⎠⎟
1/2

A 3(v+1)3/2 (v+1)1/2

−hcωe

+ 3(v)
3/2 v1/2

hcωe

⎡

⎣
⎢

⎤

⎦
⎥

+A2 9 (v+1)3

−hcωe

+ v3

hcωe

⎡

⎣
⎢

⎤

⎦
⎥

+ hcBeJ(J +1)[ ]2 3Be
ωe

⎛
⎝⎜

⎞
⎠⎟
2 (v+ 2)(v+1)

−2hcωe

+ v(v−1)
2hcωe

⎡
⎣⎢

⎤
⎦⎥

+A2 (v+ 3)(v+ 2)(v+1)
−3hcωe

+ (v− 2)(v−1)v
3hcωe

⎡
⎣⎢

⎤
⎦⎥

 

 

EvJ
(2 ) = −hc 4Be

3

ωe
2 [J(J +1)]

2 + 24
Be
ωe

⎛
⎝⎜

⎞
⎠⎟
3/2

AJ(J +1)(v+1/ 2)

− 9A
2

hcωe
(v+1/ 2)2 + 1

4
⎡
⎣⎢

⎤
⎦⎥

−hc Be
4

ωe
3 [J(J +1)]

2 9 (v+1/ 2)+ 1
2

⎡
⎣⎢

⎤
⎦⎥

− A2

hcωe
3(v+1/ 2)2 + 5

4
⎡
⎣⎢

⎤
⎦⎥
.
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Thus 

De =
4Be

3

ωe
2 (Kratzer equation)

αe = −24A
Be

ωe

⎛
⎝⎜

⎞
⎠⎟

3/2

− 6B e
2

ωe

  Bv = Be −αe (v+1/ 2( )  A < 0( )

ωexe =
12A2

ωe

βe = − 9Be
4

ωe
3 Dv = De +βe (v+1/ 2)( )

 

 
Note that, if A < 0, then αe > 0 and Bv decreases as v increases.  For A < 0, the cubic term causes 
the potential energy curve to have the physically expected asymmetry.  What is that? 
 
Non-degenerate perturbation theory is a tool that no experimental spectroscopist can live 
without.  It provides surprising and useful inter-relationships between observable quantities.  It 
permits honing of intuition.  It provides the observable consequences of every imaginable 
departure from ideality.  It explains why experimentalists and theorists often “fail to 
communicate” because they use the same symbol to refer to physically different quantities. 

Note that A is not squared! 
So we sample its sign. 
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