MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017
Professor Robert W. Field
FINAL EXAMINATION ANSWERS
Monday, December 18

I. Effect of a δ-Function at $\mathbf{Q}=\mathbf{0} \quad(\mathbf{3 0}$ points + 5) on the Energy Levels of a Harmonic Oscillator

$$
\begin{aligned}
& \hat{H}=-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d Q^{2}}+\frac{1}{2} k Q^{2}-\alpha \delta(Q) ; \quad \alpha>0 \\
& V(Q)=\frac{1}{2} k Q^{2}-\alpha \delta(Q) \text { looks like this: }
\end{aligned}
$$

A. (6 points) Without doing any calculation, which energy levels are unaffected by the $-\alpha \delta(Q)$ term?
The odd-v levels (odd symmetry) have a node at $Q=0$. They are not affected by the $\delta(Q)$ delta-function.
B. (6 points) Without doing any calculation, are the energy levels that are affected by the $-\alpha \delta(Q)$ term shifted up or down?
The δ-function acts as an extra well, resulting in a stabilization of all of the odd-v/oddsymmetry levels. Another way of answering is that the $E_{v}^{(1)}=H_{v v}^{(1)}$ term is negative for all odd- v levels, therefore all of these states are lowered in energy. Another answer is that all non-zero matrix elements of $H_{v, v-1}^{(1)}$, appear with a negative energy denominator in $E_{i}^{(2)}=\sum_{j \neq i} \frac{\left(H_{i j}\right)^{2}}{E_{i}^{(0)}-E_{j}^{(0)}}$.
C. (6 points) Without doing any calculation, among the levels that are affected by the $-\alpha \delta(Q)$ term, is the magnitude of the energy shift larger or smaller for a low- v vs. a high- v level?
The energy shift is larger for a low- v level than for a high- v level. This is a general rule for tunneling. Then there is another way of answering. The diagonal and off-diagonal elements of $\alpha \delta(Q)$ are $\frac{\alpha^{2}\left|\psi_{v}(0) \psi_{v^{\prime}}(0)\right|^{2}}{E_{v}^{(0)}-E_{v^{\prime}}^{(0)}}$. Since the perturbation term depends on the value of $\psi_{\text {odd }-v}(0) \psi_{\text {odd- } v^{\prime}}(0)$ and the HO wavefunction have a decreasing with- v amplitude at $Q=0$ because the kinetic energy and classical |momentum| is largest at $Q=0$. The $\psi_{v}(0)$ values decrease with v, so the level shift decreases with v.
D. (12 points) It is possible to show that $-\alpha \delta(Q)$ causes a discontinuity of $\frac{d \psi_{v}}{d Q}$ at $\mathrm{Q}=0$

$$
\left.\frac{d \psi_{v}}{d Q}\right|_{+0}-\left.\frac{d \psi_{v}}{d Q}\right|_{-0}=-\frac{2 \mu}{\hbar^{2}} \alpha \psi_{v}(0)
$$

This looks like

Based on the v-dependent magnitude of $\psi_{v}(\mathrm{Q})$ at $\mathrm{Q}=0$ for the evenv states, justify your answer to part \mathbf{C}. There are two ways to justify your answer to part \mathbf{C} : (1) using perturbation theory, or (2) by adjusting the phase of the energy-shifted $\psi_{v}(Q)$ at the turning points $\left[Q_{ \pm}\right.$, where $\left.E_{v}=\mathrm{V}\left(Q_{ \pm}\right)\right]$so that $\psi(\pm \infty)=0$.

Your justification of your answer to part \mathbf{C} should be based on how the magnitude of the discontinuity in $\frac{d \psi}{d Q}$ at $Q=0$ affects the size of the energy level shift relative to the energy of the $v^{\text {th }}$ harmonic oscillator level, $\omega_{e}(v+1 / 2)$.
The answers involving perturbation theory have been stated in Part \mathbf{C}. The answer that deals explicitly with the discontinuity of the derivative of ψ at $Q=0$ is based on the requirement that $\psi_{v}(\pm \infty)=0$. This is achieved when $\psi_{v}\left(Q_{ \pm}\right)$and $\delta \psi_{v}|\delta Q|_{Q=Q_{ \pm}}\left[Q_{ \pm}\right.$are the turning points, where $\left.E_{v}=V\left(Q_{ \pm}\right)\right]$have the unique correct value so that $\psi_{v}\left(Q_{ \pm}\right)$can satisfy the $Q= \pm \infty$ boundary condition. The $-\alpha \delta(Q)$ form creates a cusp in $\psi_{v}($ odd- $v)$ that has the form of too much accumulation of phase at $E_{v}^{(0)}$ that is corrected by lowering the energy, thereby removing the extra accumulated phase. If we had a $+\alpha \delta(Q)$ perturbation, the opposite behavior of too little accumulated phase would result and the energy must be increased to compensate.
E. (5 points extra credit)

Derive the equation in part \mathbf{D} for the discontinuity of $\frac{d \psi_{v}}{d Q}$ by integrating the Schrödinger equation
$\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{+\varepsilon}(H \psi-E \psi) d Q=0$.

$$
\begin{aligned}
& H \psi=-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d Q^{2}}+\frac{1}{2} k Q^{2} \psi-\alpha \delta(Q) \psi \\
& (H \psi-E \psi)=0 \\
& \int_{-\varepsilon}^{\varepsilon}(H \psi-E \psi) d Q=0 \\
& \lim _{Q=\varepsilon \mid \epsilon \rightarrow 0} \frac{1}{2} k Q^{2} \psi=0 \\
& \lim _{Q=\varepsilon \mid \in \rightarrow 0} \alpha \delta(Q) \psi(Q)=\alpha \psi(0) \\
& \int_{-\varepsilon}^{+\varepsilon}\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d Q^{2}}-\alpha \psi(0) d-E \psi(0)\right] d Q=0 \\
& \quad \downarrow \\
& 0 \\
& \quad \downarrow \\
& 0 \\
& \psi \text { is continuous } \quad E \text { is finite } \\
& \int_{-\varepsilon}^{+\varepsilon}-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d Q^{2}} d Q=-\frac{\hbar^{2}}{2 \mu}\left[\left.\frac{d \psi}{d Q}\right|_{-\varepsilon} ^{+\varepsilon}\right.
\end{aligned}
$$

II. Derivation of One Part of the Angular (25 points) Momentum Commutation Rule

A. (5 points) Show that $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}$.

Show $[\mathrm{AB}, \mathrm{C}]=\mathrm{A}[\mathrm{B}, \mathrm{C}]+[\mathrm{A}, \mathrm{C}] \mathrm{B}$
$\mathrm{A}[\mathrm{B}, \mathrm{C}]=\mathrm{ABC}-\mathrm{ACB}$
$[\mathrm{A}, \mathrm{C}] \mathrm{B}=\mathrm{ACB}-\mathrm{CAB}$
$\mathrm{A}[\mathrm{B}, \mathrm{C}]+[\mathrm{A}, \mathrm{C}] \mathrm{B}=\mathrm{ABC}-\mathrm{CAB}$
$[\mathrm{AB}, \mathrm{C}]=\mathrm{ABC}-\mathrm{CAB}$
Q.E.D.
B. (20 points)

$$
\begin{align*}
& \overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right)=\hat{i}\left(y p_{z}-z p_{y}\right)-\hat{j}\left(x p_{z}-z p_{x}\right)+\hat{k}\left(x p_{y}-y p_{x}\right) \tag{1}\\
& {\left[\mathbf{x}, \mathbf{p}_{x}\right]=i \hbar} \tag{2}\\
& {\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right]=+i \hbar \mathbf{L}_{z}} \tag{3}
\end{align*}
$$

Use equations (1) and (2) to derive equation (3).

$$
\begin{aligned}
& {\left[L_{x}, L_{y}\right]=+i \hbar L_{z}} \\
& \begin{array}{l}
L_{x}=y p_{z}-z p_{y} \\
L_{y}=-x p_{z}+z p_{x}
\end{array} \\
& \begin{aligned}
& L_{z}=x p_{y}-y p_{x} \\
& {\left[y p_{z}-z p_{y},-x p_{z}+z p_{x}\right] }=-\left[y p_{z}, x p_{z}\right]+\left[y p_{z}, z p_{x}\right]+\left[z p_{y}, x p_{z}\right]-\left[z p_{y}, z p_{x}\right] \\
&=0+\left[y p_{z}, z p_{x}\right]+\left[z p_{y}, x p_{z}\right]+0 \\
&=y\left[p_{z}, z\right] p_{x}+p_{y}\left[z, p_{z}\right] x=-i \hbar y p_{x}+i \hbar p_{y} x \\
&=i \hbar\left(p_{y} x-y p_{x}\right)
\end{aligned}
\end{aligned}
$$

Thus $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$.

III. Some Perturbation Theory

(25 points)

All electronic properties of a molecule are parametrically dependent on the displacement coordinate, \mathbf{Q}. This is part of the Born-Oppenheimer Approximation. We are interested in how the Q-dependence of the generic "A" property is encoded in the $E_{v j}$ energy levels.

Molecular Constants:

$$
\begin{align*}
E_{v J} / h c & =\omega_{e}(v+1 / 2)+\left[B_{e}-\alpha_{e}(v+1 / 2)\right] J(J+1) \tag{1}\\
& +\left[A_{e}-\alpha_{A}(v+1 / 2)-A_{J} J(J+1)+A_{D} J^{2}(J+1)^{2}\right] \tag{2}
\end{align*}
$$

Q Dependence: $\mathbf{H} / h c=\omega_{e}(v+1 / 2)+B(\mathbf{Q}) J(J+1)+A(\mathbf{Q})$
$\mathbf{Q}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]^{1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \quad\left(\omega_{e}\right.$ is in cm^{-1} units $)$
$B(\mathbf{Q})=B_{e}\left[1-2 \mathbf{Q} / R_{e}+\ldots\right] \quad\left(B_{e}\right.$ is in cm^{-1} units $)$
$A(\mathbf{Q})=A_{e}+\frac{\partial A}{\partial Q} \mathbf{Q} \quad\left(A_{e}\right.$ is in cm^{-1} units $)$
$\mathbf{H}^{(0)} / h c=\omega_{e}(v+1 / 2)+B_{e} J(J+1)+A_{e}$
$\mathbf{H}^{(1)} / h c=\mathbf{Q}\left[-2\left(B_{e} / R_{e}\right) J(J+1)+\frac{\partial A}{\partial Q}\right]$
Compute the $\mathbf{H}_{v, v+1}^{(1)}$ and $\mathbf{H}_{v, v-1}^{(1)}$ matrix elements and use them to derive the term in $E_{v J}^{(2)}$ that has the $J(J+1)$ dependence on the J quantum numbers. This is the A_{J} term in Equation (1).
We need to apply NDPT to $\mathbf{H}^{(1)}$
$\mathbf{H}^{(1)} \propto Q$ and the selection rule for Q is $\Delta v= \pm 1$, so there is no $\mathbf{H}_{v, v}^{(1)}=E_{v}^{(1)}$ contribution.
$E_{v J}=E_{v J}^{(0)}+0+\sum_{v^{\prime}=v \pm 1} \frac{\left|H_{v v}\right|^{2}}{E_{v J}^{(0)}-E_{v^{-1} J}^{(0)}}$
$\left(H_{v v^{\prime}}^{(1)}\right)^{2}=\left(Q_{v, v \pm 1}\right)^{2}\left[-2\left(B_{e} / R_{e}\right) J(J+1)+\frac{\partial A}{\partial Q}\right]^{2}$
$Q_{v, v+1}^{2}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right](v+1)$
$E_{v J}^{(0)}-E_{v+1, J}=h c\left[-\omega_{e}\right]$
$Q_{v, v-1}^{2}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right] v$
$E_{v J}^{(0)}-E_{v-1, J}^{(0)}=h c \omega_{e}$
Put it all together

Answer to Problem III (continued)

$$
\begin{aligned}
E_{v}^{(2)} & =\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]\left(-2\left(B_{e} / R_{e}\right) J(J+1)+\frac{\partial A}{\partial Q}\right)^{2}\left[\frac{v+1}{-\hbar c \omega_{e}}+\frac{v}{\hbar c \omega_{e}}\right] \\
& =\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]\left(-2\left(B_{e} / R_{e}\right) J(J+1)+\frac{\partial A}{\partial Q}\right)^{2}\left(-\frac{1}{\hbar c \omega_{e}}\right)
\end{aligned}
$$

The only term that depends on $J(J+1)$ is the cross term in the middle factor
$\left[+4\left(B_{e} / R_{e}\right) J^{2}(J+1)^{2}+\left(\frac{\partial A}{\partial Q}\right)^{2}-4\left(\frac{B_{e}}{R_{e}}\right) \frac{\partial A}{\partial Q} J(J+1)\right]$
$-A_{J}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]\left[-4\left(B_{e} / R_{e}\right) \frac{\partial A}{\partial Q}\right]\left[-\frac{1}{\hbar c \omega_{e}}\right]$

IV. IR Spectroscopy Under a Deadline

(50 points)
You have a contract with the Army Research Office (ARO) to determine the equilibrium bond length (r_{e}), vibrational frequency $\left(\omega_{e}\right)$, and electric dipole moment (μ_{el}) of the electronic ground state of TAt (tritium astatide). Your contract terminates tomorrow and you must write a final report today. Last night, on your desperate final attempt to record the vibrationrotation spectrum of TAt in an electric field of 100,000 Volts $/ \mathrm{cm}$, you obtained a spectrum unlike any you had observed previously. You suspect that this spectrum is that of the TAt $v=1 \leftarrow v=0$ transition, but you have no additional scheduled experimental time on the hyper-IPECAC facility, which is the only Astatine source $\left({ }^{210} \mathrm{At}_{85}\right.$ has a half life of 8.3 hours) in the world that is capable of generating the At flux needed for your experiment. Therefore you must write your final report to ARO without doing any further experiments to verify whether your spectrum is that of TAt or some other molecule. The likely other molecules include $\mathrm{At}_{2}, \mathrm{~T}_{2}$, HAt, DAt, HT, and DT (you may ignore all other possibilities here). Your continued funding by ARO depends on the timely submittal of your report, but your career depends on its correctness.

One of your research assistants has provided you with the following possibly useful information:

Atomic Weight	H 1.00782 D 2.014 T 3.0160 At 210.0		Ionization Potentials	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~F} \\ & \mathrm{Cl} \\ & \mathrm{Br} \\ & \mathrm{I} \\ & \mathrm{At} \end{aligned}$	$\begin{aligned} & 109,67 \\ & 140,55 \\ & 104,99 \\ & 95,550 \\ & 84,340 \\ & \text { unkno } \\ & \hline \end{aligned}$	$\begin{aligned} & .581 \mathrm{~cm}^{-1} \\ & .5 \mathrm{~cm}^{-1} \\ & \mathrm{~cm}^{-1} \\ & \mathrm{~cm}^{-1} \\ & \mathrm{~cm}^{-1} \\ & \mathrm{n} \\ & \hline \end{aligned}$
"Cova	ent Radius"	H	$0.32 \AA$ "Ionic	Radius"	H^{-}	$2.08 \AA$
		F	$0.72 \AA$		F^{-}	$1.36 \AA$
		Cl	$0.99 \AA$		Cl^{-}	1.81 Å
		Br	$1.14 \AA$		Br^{-}	$1.95 \AA$
		I	$1.33 \AA$		I^{-}	$2.16 \AA$
		At	$1.45 \AA$		At^{-}	unknown

Ground State

		ω_{e}	R_{e}	μ_{e}
HF	${ }^{1} \Sigma$	$4138.32 \mathrm{~cm}^{-1}$	0.9168 Å	1.8262 Debye
HCl	${ }^{1} \Sigma$	$2990.95 \mathrm{~cm}^{-1}$	1.2746 Å	1.1085 Debye
HBr	${ }^{1} \Sigma$	$2648.98 \mathrm{~cm}^{-1}$	1.4144 Å	0.8265 Debye
HI	${ }^{1} \Sigma$	$2309.01 \mathrm{~cm}^{-1}$	1.6092 Å	0.4477 Debye
HAt	unknown	------	------	-------
F_{2}	${ }^{1} \Sigma_{g}$	$916.64 \mathrm{~cm}^{-1}$	1.4119 Å	-------
Cl_{2}	${ }^{1} \Sigma_{g}$	$559.72 \mathrm{~cm}^{-1}$	1.9879 Å	-------

Br_{2}	${ }^{1} \Sigma_{\text {g }}$	$325.321 \mathrm{~cm}^{-1}$	2.2811 Å
I_{2}	${ }^{1} \Sigma_{g}$	$214.50 \mathrm{~cm}^{-1}$	2.6663 Å
At_{2}	unknown	-------	--------
H_{2}	${ }^{1} \Sigma_{\text {g }}$	$4401.21 \mathrm{~cm}^{-1}$	$0.7414 \AA$

Some useful conversion formulas (B_{e} is in cm^{-1}, μ is in atomic mass units, and R_{e} is in \AA, and $1 \mathrm{~cm}=10^{8} \AA$):

$$
\begin{array}{ll}
\text { Reduced Mass } & \mu(X Y)=\frac{M_{X} M_{Y}}{M_{X}+M_{Y}}(\mathrm{amu}) \\
\omega_{e}=\frac{1}{2 \pi c} \sqrt{\frac{k}{\mu}} \quad\left(\mathrm{~cm}^{-1}\right) \\
B_{e}=\frac{1.6858 \times 10^{-15}}{\mu R_{e}^{2}} & \left(\mathrm{~cm}^{-1}\right)
\end{array}
$$

In the absence of an electric field, the vibrational rotational energy is given by:

$$
E_{v J} / h c=\omega_{e}(v+1 / 2)-\omega_{e} x_{e}(v+1 / 2)^{2}+\left[B_{e}-\alpha_{e}(v+1 / 2)\right] J(J+1) .\left(\mathrm{cm}^{-1}\right)
$$

Before analyzing your spectrum and writing your report to ARO, it would be a good idea to make some predictions about the spectroscopic properties of TAt.
PLEASE NOTE: Many parts of this question can be answered even if you are unable to answer an earlier part.
A. (4 points) Use the properties of related atoms and molecules to estimate R_{e} and ω_{e} for TAt. Specify the basis for the relationships that you are exploiting.
There are two ways to estimate R_{e} and ω_{e} for TAt. One is to use some form of linear extrapolation. The other is to use isotope-substitution relationships of TAt to HAt.

There are no molecular constants for HAt, so you need to get clever. Use linear extrapolation to get from HI to HAt and then use isotope relationships to get from HAt to TAt.

For ω_{e} and R_{e}

$$
\begin{array}{cc}
\omega_{e}(\mathrm{HCl})-\omega_{e}(\mathrm{HBr}) & R_{e}(\mathrm{HCl})-R_{e}(\mathrm{HBr}) \\
342 \mathrm{~cm}^{-1} & -0.140 \AA \\
\omega_{e}(\mathrm{HBr})-\omega_{e}(\mathrm{HI}) & R_{e}(\mathrm{HBr})-R_{e}(\mathrm{HI}) \\
339 \mathrm{~cm}^{-1} & -0.195 \\
\omega_{e}(\mathrm{HAt})= & R_{e}(\mathrm{HAt})
\end{array}
$$

estimate

$$
2309-336=1973 \quad 1.609+0.250=1.859 \AA
$$

Isotope ratio for $\omega_{e}: \quad \frac{\omega_{e}^{h}}{\omega_{e}^{\ell}}=\left(\frac{\mu^{\ell}}{\mu^{h}}\right)^{1 / 2}=\left(\frac{\frac{(210)(1)}{211}}{\frac{(210)(3)}{214}}\right)=0.581, \quad$ and for $R_{e}: \frac{R_{e}^{h}}{R_{e}^{\ell}}=1$
$\omega_{e}(\mathrm{TAt}) \approx(0.581) 1973 \mathrm{~cm}^{-1}=1146 \mathrm{~cm}^{-1}$
$R_{e}(\mathrm{TAt}) \approx 1.859 \AA=1.859 \times 10^{-8} \mathrm{~cm}$
B. (6 points) Compute B_{e} from your estimated r_{e}. Let $\alpha_{e} \approx 0$ and $\omega_{e} x_{e} \approx 0$ and calculate the frequencies (in cm^{-1}) of the 3 lowest- J transitions in the P branch and in the R branch of the $v=1 \leftarrow v=0$ rotation-vibration band. The $\mathrm{P}(\mathrm{J})$ line is the $\mathrm{J}-1 \leftarrow \mathrm{~J}$ transition and the $\mathrm{R}(\mathrm{J})$ line is the $\mathrm{J}+1 \leftarrow \mathrm{~J}$ transition. The lowest possible J -value in a ${ }^{1} \Sigma$ state is $\mathrm{J}=0$.

$$
\begin{aligned}
& B_{e}=\frac{1.6858 \times 10^{-15}}{(\mu)\left(1.859 \times 10^{-8}\right)^{2}}=\frac{1.6858 \times 10^{-15}}{(2.94)\left(3.45 \times 10^{-16}\right)} \\
& \mu=\frac{(3)(210)}{213}=2.94 \\
& B_{e}=1.862 \\
& P(J)=\omega_{e}+B^{\prime}(J-1)(J)-B^{\prime \prime}(J)(J+1) \\
& =\left(B^{\prime}-B^{\prime \prime}\right) J^{2}-B^{\prime} J-B^{\prime \prime} J \\
& \approx 0 J^{2}-2 B J \\
& R(J)=\omega_{e}+B^{\prime}(J+1)(J+2)-B^{\prime \prime}(J)(J+1) \\
& =\left(B^{\prime}-B^{\prime \prime}\right) J^{2}+3 B^{\prime} J+2 B^{\prime}-B^{\prime \prime} J \\
& \approx 0 J^{2}+2 B^{\prime} J+2 B^{\prime} \\
& R(0) \quad \omega_{e}+2 B \quad 1136.92 \\
& R(1) \quad \omega_{e}+4 B \quad 1133.34 \\
& R(2) \quad \omega_{e}+6 B \quad 1129.70 \\
& \begin{array}{clll}
P(0) & \omega_{e} & -2 B & 1122.24
\end{array} \\
& \begin{array}{llll}
P(1) & \omega_{e} & -4 B & 1118.42
\end{array} \\
& \begin{array}{llll}
P(2) & \omega_{e} & -6 B & 1114.54
\end{array}
\end{aligned}
$$

From these assignments, we get

$$
\begin{gathered}
2 B_{e} \approx 1136.92-1133.34=3.58 \mathrm{~cm}^{-1} \\
B_{e}=1.79 \mathrm{~cm}^{-1} \\
\omega_{e} \approx 1136.92-3.58=1133.34 \mathrm{~cm}^{-1}
\end{gathered}
$$

These are very close to the predicted values

$$
\omega_{e}=1146 \mathrm{~cm}^{-1} \quad \mathrm{~B}_{e}=1.862 \mathrm{~cm}^{-1}
$$

Looks good for assignment as TAt.
C. (4 points) Estimate the electric dipole moment, μ_{el}, for TAt, in Debye units. Do you expect the T or the At atom to have a net positive charge? Why?

Your record of the infrared spectrum below for what (you hope) is TAt is:

You identify the following lines from the spectrum (all in cm^{-1}):
1058.66, 1063.32, 1067.92, 1072.46, 1076.93, 1081.35, 1085.71, 1090.01, 1094.25, $1098.43,1102.55,1106.61,1110.60,1114.54,1118.42,1122.24,1129.70,1133.34$, $1136.92,1140.44,1143.89,1147.29,1150.63,1153.91,1157.13,1160.29,1163.39$, $1166.43,1169.40,1172.32,1175.18,1177.98$
To estimate μ (TAt) we expect it to be the same as for HAt which we can guestimate by linear extrapolation from $\mathrm{HCl}, \mathrm{HBr}$, and HI .
$\mu(\mathrm{HCl})-\mu(\mathrm{HBr}) \quad 1.1085 \mathrm{D}-0.8265 \mathrm{D}=0.282$ Debye
$\mu(\mathrm{HBr})-\mu(\mathrm{HI}) \quad 0.8265 \mathrm{D}-0.4477 \mathrm{D}=0.379$ Debye
$\mu(\mathrm{HAt}) \approx 0.4477-0.379-0.097 \approx 0$.
μ for TAt is likely to be near zero. There is no way to predict whether T or At will have a net positive charge.
D. (10 points) Assign a few lines of the rotation-vibration spectrum. Two or three lines each in the R and P branches will be sufficient. Assume $\alpha_{e} \approx 0$ and $\omega_{e} \mathrm{x}_{e} \approx 0$ and use your assigned lines to determine ω_{e} and B_{e}. Could this be TAt?
I have given the low-J assignments in the answer to Part \mathbf{C}. The key feature to notice is the "zero-gap" between the lines at 1122.24 and $1129.70 \mathrm{~cm}^{-1}$. This gap identifies the lowest-J lines in the R and P branches. It also tells us that the transition is ${ }^{1} \Sigma-^{1} \Sigma$, not ${ }^{1} \Pi-{ }^{1} \Pi$. The zero gap would be larger for a ${ }^{1} \Pi-{ }^{1} \Pi$ transition. There would also be a moderately strong $Q(1)$ line near the middle of the zero-gap.

Looking good for TAt.
E. (4 points) Which of the molecules $\mathrm{At}_{2}, \mathrm{~T}_{2}, \mathrm{HAt}$, DAt, HT, and DT are expected to have electric dipole allowed rotation-vibration spectra? If you are undecided about HT and DT, state your reasons for and against.
HAt, DAt will definitely have a strong electric dipole allowed transition.
$A t_{2}$ and T_{2} definitely will not have any dipole allowed transition.
HT and DT will have a very weak dipole allowed transition, but it will have very large ω_{e} and B_{e} constants.

The center of electron charge will not quite coincide with the center of mass. The molecule rotates about the center of mass. There will be a small rotating electric dipole.
F. (4 points) What is the the minimum necessary spectroscopic information that could be useful in showing that your observed spectrum is not due to any of the molecules from part \mathbf{E} that have an allowed rotationvibration spectrum? Could your spectrum be due to any of the other likely candidate molecules?
The rotational and vibrational constants for the observed transition are too small for the molecule to be HAt or DAt. This is a huge effect.

The rotational and vibrational constants for HT and DT are vastly too large for a plausible assignment of the observed spectrum to HT or DT. The Stark effect will also be very, very small for HT and DT.

The dipole moment for the putative TAt spectrum will be small, much smaller due to that for TI or DI.

The small μ_{e} will be an excellent confirmation of the TAt assignment.

For Question IV.G: The $v=1 \leftarrow v=0$ spectrum consists of a series of absorption lines following the selection rule $\Delta \mathrm{J}= \pm 1$ (R and P branches). In the absence of an external electric field, all $2 \mathrm{~J}+1 \mathrm{M}_{\mathrm{J}}$ components of each J -level are exactly degenerate and the spectrum consists of simple R and P "lines". When a $10^{5} \mathrm{~V} / \mathrm{cm}$ electric field is applied, a new term is added to the Hamiltonian:

$$
\widehat{\mathbf{H}}^{\text {Stark }}=\boldsymbol{\varepsilon} \cdot \boldsymbol{\mu} .
$$

If this field lies along the laboratory Z-direction, the M_{J}-degeneracy is lifted. The only non-zero integrals involving the Stark-effect Hamiltonian are

$$
\begin{aligned}
& \int \phi_{J, M_{J}}^{*} \widehat{\mathbf{H}}^{\text {Stark }} \phi_{J-1, M} d \tau=\mathbf{H}_{J, M ; J-1, M}^{\text {Stark }}=f \mu_{e l} \varepsilon_{Z}\left[\frac{J^{2}-M^{2}}{4 J^{2}-1}\right]^{1 / 2} \\
& \int \phi_{J, M_{J}}^{*} \widehat{\mathbf{H}}^{\text {Stark }} \phi_{J+1, M_{J}} d \tau=\mathbf{H}_{J, M ; J+1, M}^{\text {Stark }}=f \mu_{e l} \varepsilon_{Z}\left[\frac{(J+1)^{2}-M^{2}}{(2 J+1)(2 J+3)}\right]^{1 / 2}
\end{aligned}
$$

where f is a constant, the value of which depends on the units used. If μ_{el} is in Debye (D), ε_{z} is in Volts $/ \mathrm{cm}$, and $\mathbf{H}_{J M ; J \pm 1, M}^{\text {Stark }}$ is desired in cm^{-1}, the conversion factor is $f=1.6794 \times 10^{-5}$ $[(\mathrm{V} / \mathrm{cm}) \mathrm{D}]^{-1}$.

At $\mathrm{E}=10^{5} \mathrm{~V} / \mathrm{cm}$, the lines at 1129.70 and $1122.24 \mathrm{~cm}^{-1}$ each split into two components separated by $9.0 \times 10^{-3} \mathrm{~cm}^{-1}$. The lines at 1133.34 and $1118.42 \mathrm{~cm}^{-1}$ broaden slightly, but no splitting is resolvable. The electric field has no perceptible effect on all of the remaining lines. See next page for Question IV.G.
G. (10 points) Calculate the Stark splitting for a generic diatomic molecule in $\mathrm{J}=1$ of a ${ }^{1} \Sigma^{+}$electronic state. The $\mathrm{M}_{\mathrm{J}}=0$ component is pushed down by $\mathrm{J}=2, \mathrm{M}_{\mathrm{J}}=0$ and pushed up by $\mathrm{J}=0, \mathrm{M}_{\mathrm{J}}=0$. The $\mathrm{M}_{\mathrm{J}}=+1$ and $\mathrm{M}_{\mathrm{J}}=-1$ levels are both shifted downward by the same amount by their interaction with $\mathrm{J}=2, \mathrm{M}_{\mathrm{J}}=1$, and $\mathrm{M}_{\mathrm{J}}=-1$, but there exist no $\mathrm{J}=0, \mathrm{M}_{\mathrm{J}}= \pm 1$ levels to push these $\mathrm{J}=2, \mathrm{~J}_{\mathrm{M}}= \pm 1$ levels up. Use second-order perturbation theory to express the energy shifts in terms of μ_{el} and B_{e} (specifically, $\mu_{\mathrm{el}}^{2} / B$ times some J-dependent factors).
The 1129.70 line is $\mathrm{R}(0)$ and the 1122.24 line is $\mathrm{P}(1)$. One expects both of these lines to split into 2 components because $\mathrm{J}=1$ splits and $\mathrm{J}=0$ only shifts. The 1133.34 line is $\mathrm{R}(1)$ and the 1118.42 line is $\mathrm{P}(2)$. both of these lines will split into more than 2 components (draw a level diagram) and the Stark splittings of $\mathrm{J}=2$ will be much smaller than in $\mathrm{J}=1$ because of the larger energy denominator for the second-order Stark shift in $\mathrm{J}=2$.

Stark effect for $\mathrm{J}=1$ of a ${ }^{1} \Sigma^{+}$state: $\Delta \mathrm{M}=0$ selection rule for F-field in z-direction.
\qquad
$J=2$ 6B

$J=0$ - 0
E-field in Z-direction

$$
\begin{aligned}
& \langle m=0, J=0| \mathbf{H}^{\text {Stark }}|m=0, J=1\rangle=f \mu_{\mathrm{el}} \varepsilon_{Z}\left[\frac{1-0}{4-1}\right]^{1 / 2} \\
& \langle m=0, J=1| \mathbf{H}^{\text {Stark }}|m=0, J=2\rangle=f \mu_{\mathrm{el}} \varepsilon_{Z}\left[\frac{4-0}{16-1}\right]^{1 / 2} \\
& \langle m= \pm 1, J=1| \mathbf{H}^{\text {Stark }}|m= \pm 1, J=2\rangle=f \mu_{\mathrm{el}} \varepsilon_{Z}\left[\frac{4-1}{16-1}\right]^{1 / 2} \\
& \underbrace{0} f^{2} \mu^{2} \varepsilon_{Z}^{2}\left[+(1 / 3)^{1 / 2} / 2 B-(4 / 15)^{1 / 2} / 4 B\right] \\
& \begin{array}{ll}
0 & f^{2} \mu_{\mathrm{el}}^{2} \varepsilon_{Z}^{2}\left[-(3 / 15)^{1 / 2} / 4 B\right]
\end{array} \\
& f^{2} \mu_{\mathrm{el}}^{2} \varepsilon_{Z}^{2} \frac{[1 / 3]^{1 / 2}}{-2 B} \\
& \varepsilon=\left(1.6794 \times 10^{-5}\right)[\mathrm{V} / \mathrm{cm} \cdot \mathrm{D}]^{-1} \\
& J=1, m=0\left(1.6794 \times 10^{5} \mathrm{~V} / \mathrm{cm}\right. \\
& J=1, m= \pm 1
\end{aligned}
$$

H. (5 points) Interpret the observed Stark effect and use it to estimate μ_{el}.

The results summarized in IV.G are consistent with a barely observable splitting of $9 \times 10^{-3} \mathrm{~cm}^{-1}$ in $J=1$.

This splitting yields $\mu_{\mathrm{el}}=$
I. (3 points) Does the observed Stark effect determine the sign of μ_{el} ?

The Stark splitting is a second-order effect and samples only $\left(\mu_{\mathrm{el}}\right)^{2}$. It cannot yield the sign of μ_{el}.

V. From $\Psi(x, t)$ to $\rho(t)$

(35 points)

$$
\Psi(x, t)=c_{1}(t) \psi_{1}(x)+c_{2}(t) \psi_{2}(x)+c_{3}(t) \psi_{3}(x)+c_{4}(t) \psi_{4}(x)
$$

where $\left\{\psi_{n}\right\}$ are eigenfunctions of a time-independent $\mathbf{H}^{(0)} . E_{n}$ is the eigen-energy associated with the ψ_{n} eigenfunction

$$
|\Psi\rangle \equiv|\mathbf{c}\rangle=\left(\begin{array}{c}
c_{1}(t) \\
c_{2}(t) \\
c_{3}(t) \\
c_{4}(t)
\end{array}\right)
$$

A. (6 points) Evaluate the following objects in terms of the $\left\{c_{n}(t)\right\}$ and $\left\{c_{n}^{*}(t)\right\}$.
(i) (2 points) $\langle\mathbf{c} \mid \mathbf{c}\rangle$
$\langle\mathbf{c} \mid \mathbf{c}\rangle=\sum_{i} \mathbf{c}_{i}^{*} \mathbf{c}_{i}$ a real and positive number.
(ii) (4 points) $|\mathbf{c}\rangle\langle\mathbf{c}|$
$|\mathbf{c}\rangle\langle\mathbf{c}|=\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)\left(\begin{array}{llll}c_{1}^{*} & c_{2}^{*} & c_{3}^{*} & c_{4}^{*}\end{array}\right)=\left(\begin{array}{cccc}c_{1}^{*} c_{1} & c_{1} c_{2}^{*} & c_{1} c_{3}^{*} & c_{1} c_{4}^{*} \\ c_{2} c_{1}^{*} & c_{2}^{*} c_{2} & c_{2} c_{3}^{*} & c_{2} c_{4}^{*} \\ c_{3} c_{1}^{*} & c_{3} c_{2}^{*} & c_{3}^{*} c_{3} & c_{3} c_{4}^{*} \\ c_{4} c_{1}^{*} & c_{4} c_{2}^{*} & c_{4} c_{3}^{*} & c_{4}^{*} c_{4}\end{array}\right)$
B. (3 points) What is an object like $|\mathbf{c}\rangle\langle\mathbf{c}|$ called?
$|\mathbf{c}\rangle\langle\mathbf{c}|$ is called the "density matrix". It denoted as $\boldsymbol{\rho}$ or $\boldsymbol{\rho}_{\mathbf{c}}$.
C. (4 points) If $\Psi(x, t)$ is normalized to 1 , what combination of $\left\{c_{n}(t)\right\}$ and $\left\{c_{n}^{*}(t)\right\}$ must be equal to 1 ?
$\int \Psi^{*}(x, t) \Psi(x, t) d t=1$ requires that $\left[c_{1} c_{1}^{*}+c_{2} c_{2}^{*}+c_{3} c_{3}^{*}+c_{4} c_{4}^{*}\right]=1$.
D. (5 points) Some notation: $|n\rangle=\psi_{n}(x)$, i.e. $|3\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
(i) (3 points) Evaluate $\langle 3 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 4\rangle$.
$\langle 3 \mid \mathbf{c}\rangle=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)=c_{3}$
$\langle\mathbf{c} \mid 4\rangle=\left(\begin{array}{llll}c_{1}^{*} & c_{2}^{*} & c_{3}^{*} & c_{4}^{*}\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=c_{4}^{*}$
$\langle 3 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 4\rangle=c_{3} c_{4}^{*}$
(ii) (2 points) What is the relationship of $\langle 3 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 4\rangle$ to $\langle 4 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 3\rangle$?
ρ is Hermitian, this means $\boldsymbol{\rho}^{\dagger}=\rho$
$\langle 3 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 4\rangle=[\langle 4 \mid \mathbf{c}\rangle\langle\mathbf{c} \mid 3\rangle]^{*}$
For questions \mathbf{E}, \mathbf{F}, and \mathbf{G}, simplify to a 2 -state system:

$$
\begin{aligned}
& \Psi(x, t)=c_{1} e^{-i E_{1} t / \hbar} \psi_{1}(x)+c_{2} e^{-i E_{2} t / \hbar} \psi_{2}(x) \\
& |1\rangle=\binom{1}{0} \\
& \mathbf{H}|1\rangle=E_{1}|1\rangle
\end{aligned} \quad|2\rangle=\binom{0}{1} .
$$

E. (6 points) At $t=0, \Psi(x, 0)=|1\rangle$.
(i) (2 points) Write an expression for $\Psi(x, t)$.
$\Psi(x, t)=c_{1}\binom{1}{0} e^{-i E_{1} t / \hbar}+c_{2}\binom{0}{1} e^{-i E_{2} t / \hbar}$
(ii) (2 points) Write an expression for $\boldsymbol{\rho}(t)$.
$\boldsymbol{\rho}(t)=\left(\begin{array}{cc}c_{1} c_{1}^{*} & c_{1} c_{2}^{*} e^{i\left(E_{2}-E_{1}\right) t / \hbar} \\ c_{1}^{*} c_{2} e^{-i\left(E_{2}-E_{1}\right) t / \hbar} & c_{2} c_{2}^{*}\end{array}\right)$
(iii) (2 points) Is $\boldsymbol{\rho}$ time-dependent when the system is in a single energy eigenstate?
If $c_{1}=1, c_{2}=0$ or $c_{1}=0, c_{2}=1$ then ρ is time-independent because the off-diagonal elements are zero and the only time-dependence resides in the off-diagonal elements of ρ.
F. (3 points) Suppose we apply a pulse that terminates at $\mathrm{t}=0$. This pulse results in a flip angle of $\pi / 2$ at ω_{12}. Then $\Psi(x, 0)=2^{-1 / 2}|1\rangle+2^{-1 / 2}|2\rangle$.
(i) (1 points) Give an expression for $\Psi(x, t)$.

$$
\begin{aligned}
\Psi(x, t) & =2^{-1 / 2}\left[\psi_{1} e^{-i E_{1} t / \hbar}+\psi_{2} e^{-i E_{2} t / \hbar}\right] \\
& \text { or } \\
& =2^{-1 / 2}\left[\binom{1}{0} e^{-i E_{1} t / \hbar}+\binom{0}{1} e^{-i E_{2} t / \hbar}\right]
\end{aligned}
$$

(ii) (2 points) Write an expression for $\rho(t)$.
$\boldsymbol{\rho}(t)=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} e^{-i\left(E_{1}-E_{2}\right) t / \hbar} \\ \frac{1}{2} e^{+i\left(E_{1}-E_{2}\right) t / \hbar} & \frac{1}{2}\end{array}\right)$
G. (8 points) When $\Psi(x, t)$ involves a superposition of energy eigenstates:
(i) (2 points) Are the population terms (diagonal elements) of ρ time-dependent?
The diagonal terms are independent of time.
(ii) (3 points) Are the coherence terms (off-diagonal elements) of ρ time-dependent?
The off-diagonal (coherence) terms are time-dependent.
(iii) (3 points) If a ρ_{ij} term is time-dependent, at what frequency does it oscillate?
If $\rho_{i j}$ is time-dependent, it oscillates at $\omega_{i j}=\left(E_{i}-E_{j}\right) / \hbar$.

VI. Semi-classical Calculation of
 (35 points) Vibrational Overlap Integrals in the Diabatic Representation

Diabatic potential energy curves can cross. Near-degenerate vibrational states of two crossing diabatic curves, $\mathrm{V}_{1}(\mathrm{R})$ and $\mathrm{V}_{2}(\mathrm{R})$, interact with each other with an interaction matrix element

$$
\left\langle e_{1}, v_{1}\right| \mathbf{H}^{e l}(R)\left|e_{2}, v_{2}\right\rangle=\left\langle e_{1}\right| \mathbf{H}^{e l}\left(R_{c}\right)\left|e_{2}\right\rangle\left\langle v_{1} \mid v_{2}\right\rangle
$$

where

$$
\left\langle e_{1}\right| \mathbf{H}^{e l}\left(R_{c}\right)\left|e_{2}\right\rangle \equiv H_{12}^{e l}\left(R_{c}\right)
$$

and R_{c} is the internuclear distance at which $V_{1}(R)$ intersects $V_{2}(R)$. For this problem, V_{1} and V_{2} are both harmonic and both have the same value of $\omega_{e}=200 \mathrm{~cm}^{-1}$

$$
\begin{aligned}
& V_{1}(R) / h c=15,000 \mathrm{~cm}^{-1}+\frac{1}{2} k\left(R-R_{e 1}\right)^{2} \\
& V_{2}(R) / h c=16,000 \mathrm{~cm}^{-1}+\frac{1}{2} k\left(R-R_{e 2}\right)^{2} \\
& k=\omega_{e}^{2} \mu(\mu \text { is the reduced mass }) \\
& \omega_{e}=200 \mathrm{~cm}^{-1}
\end{aligned}
$$

R_{c} is chosen so that $v_{1}=7$ is near degenerate with $v_{2}=2$ and $v_{1}=12$ is near degenerate with $v_{2}=7$.

The stationary phase point, R_{sp}, is the value of R at which the classical mechanical momentum on V_{1} is the same as that on V_{2}.
A. (5 points) What is the relationship between R_{sp} nd R_{c} for the $v_{1}=7, v_{2}=2$ pair of levels and for the $v_{1}=12, v_{2}=7$ pair of levels?

$$
\begin{gathered}
R_{\mathrm{sp}}\left(v_{1}=7, v_{2}=2\right)= \\
R_{\mathrm{sp}}\left(v_{1}=12, v_{2}=7\right)=
\end{gathered}
$$

The stationary phase point for two near-degenerate levels is the curve-crossing point, R_{c}.
$R_{s p}=R_{c}$ for both $\left(v_{1}=7\right.$ and $\left.v_{2}=2\right)$ and $\left(v_{1}=12\right.$ and $\left.v_{2}=7\right)$.
B. (8 points)
(i) (5 points) What is the distance between nodes on either side of R_{c} at $v_{1}=7$ and at $v_{2}=2$? Use the deBroglie relationship between $\lambda(R)$ and the classical mechanical momentum, $p_{v}(R)$. Express $p_{v}(R)$ in terms of $\left(E_{v}-V\left(R_{s p}\right)\right)$ and μ, the reduced mass.

$$
\begin{aligned}
& \lambda(R)=h / p(R) \\
& p_{v}(R)=\left[2 \mu\left(E_{v}-V(R)\right)\right]^{1 / 2}
\end{aligned}
$$

Distance between nodes is $1 / 2 \lambda(R)$.
$\frac{1}{2} \lambda(R)=\frac{1}{2} \frac{h}{\left[2 \mu\left(E_{v}-V\left(R_{c}\right)\right)\right]^{1 / 2}}$
(ii) (3 points) Is this node-spacing the same for $v_{1}=12$ and $v_{2}=7$? For near-degenerate vibrational levels, e.g. $v_{1}=7$ and $v_{2}=2,\left[E_{v}-\mathrm{V}\left(R_{c}\right)\right]$ is the same, so the node to node distance is the same.
C. (5 points) For a harmonic oscillator with $\omega_{e}=200 \mathrm{~cm}^{-1}$, what is the vibrational level-independent oscillation period? Express your answer in symbols (ω_{e}, h, c, etc.).

$$
\begin{aligned}
& \text { If } \omega_{e}=200 \mathrm{~cm}^{-1} \\
& \text { hc } \begin{aligned}
e & =E_{v}-E_{v-1} \\
\tau & =\frac{h}{\Delta E}=\frac{1}{c \omega_{e}}=\frac{1}{\left(3 \times 10^{10} \mathrm{~cm} / \mathrm{s}\right)\left(200 \mathrm{~cm}^{-1}\right)}=\frac{1}{6 \times 10^{12} \mathrm{~s}^{-1}}=1.67 \times 10^{-13} \mathrm{~s}
\end{aligned}
\end{aligned}
$$

D. (10 points)
(i) (3 points) What is the probability (expressed in terms of ω_{e}, h, and $p_{v}(R)$) of finding the classical oscillator with momentum $p>0$ between the R_{c}-centered pair of nodes for $v_{1}=7$ on V_{1} ? [HINT: use semi-classical expressions for wavelength and velocity.]
We want the ratio: $\frac{\text { node-to-node time }}{\tau / 2}$. Velocity is p / μ, so node-to-node time is $\frac{\frac{1}{2} \lambda}{p / \mu}$ For $v_{1}=7$: we want
$E\left(v_{1}=7\right)-V_{1}\left(R_{c}\right)=h c\left[\left(15,000 \mathrm{~cm}^{-1}+(7.5) 200\right)\left(-15,000-\frac{1}{2} k\left(R_{c}-R_{\mathrm{el}}\right)^{2}\right)\right]$.
(ii) (2 points) Is this probability different from that for $v_{2}=2$ on V_{2} ?
The probabilities are identical because $p_{E_{\mathrm{r}_{2}-2}}\left(R_{c}\right)$ and $\lambda_{E_{\mathrm{r} 2}=2}\left(R_{c}\right)$ are the same as $p_{E_{\mathrm{r}_{1}=7}}\left(R_{c}\right)$ and $\lambda_{E_{\mathrm{r}_{1}-7}}\left(R_{c}\right)$.
(iii) (2 points) How is $\int_{R_{c}-\lambda / 4}^{R_{c}+\lambda / 4}\left|\psi_{v}(R)\right|^{2} d R$ related to the probability in part $\mathbf{D}(\mathrm{i})$?
$\int_{R_{c}-\lambda / 4}^{R_{c}+\lambda / 4}\left|\psi_{v}(R)\right|^{2} d R$ is the node-to-node probability in Part $\mathbf{D}(\mathrm{i})$.
(iv) (3 points) Estimate the $\left\langle v_{1}=7 \mid v_{2}=2\right\rangle$ overlap integral.
$\left|\left\langle v_{1}=7 \mid v_{2}=2\right\rangle\right|^{2}$ is the node-to-node probability in the R_{c} region. This is true because the $\left\langle v_{1}=7 \mid v_{2}=2\right\rangle$ integral accumulates in the $R=R_{c}$ node-to-node region.

$$
\left\langle v_{1}=7 \mid v_{2}=2\right\rangle=\left[\int_{R_{c}-\lambda / 4}^{R_{c}+\lambda / 4}\left|\psi_{v}(R)\right|^{2} d R\right]^{1 / 2}
$$

E. (7 points) Estimate the ratio

$$
\begin{gathered}
\frac{\left\langle v_{1}=12 \mid v_{2}=7\right\rangle}{\left\langle v_{1}=7 \mid v_{2}=2\right\rangle} \\
{\left[\text { HINT: } \frac{p_{v_{1}=12}^{2}\left(R_{c}\right)}{p_{v_{1}=7}^{2}\left(R_{c}\right)}=\frac{1500 \mathrm{~cm}^{-1}}{500 \mathrm{~cm}^{-1}}\right]}
\end{gathered}
$$

We have two stationary phase regions centered at R_{c} and with the same distance between nodes. The harmonic oscillator period does not depend on v.

However, the velocity in the $v_{1}=12, v_{2}=7$ region is larger than that in the $v_{1}=7, v_{2}=2$ region.

$$
\begin{aligned}
& \frac{p_{v_{1}=12}^{2}\left(R_{c}\right)}{2 \mu}=\frac{(2500-1000)^{2} h c}{2 \mu} \\
& \frac{p_{v_{2}=7}^{2}\left(R_{c}\right)}{2 \mu}=\frac{(2500-1000)^{2} h c}{2 \mu}
\end{aligned}
$$

However,

$$
\begin{array}{r}
\frac{p_{v_{1}==}^{2}\left(R_{c}\right)}{2 \mu}=\frac{(1500-1000)^{2} h c}{2 \mu} \\
\frac{p_{v_{2}=2}^{2}\left(R_{c}\right)}{2 \mu}=\frac{(1500-1000)^{2} h c}{2 \mu} \\
\frac{p_{v_{1}=12}^{2}\left(R_{c}\right)}{p_{v_{1}=7}^{2}\left(R_{c}\right)}=\frac{(1500)^{2}}{(500)^{2}}
\end{array}
$$

Thus $\frac{\left\langle v_{1}=12 \mid v_{2}=7\right\rangle}{\left\langle v_{1}=7 \mid v_{2}=2\right\rangle}=\frac{1500}{500}$!

\mathscr{T} ave a Tonderful \mathscr{T} Itiday $\mathscr{B r}$ reak!!!!

USEFUL CONSTANTS and FORMULAS

$1 \mathrm{~mW}=10^{-3} \mathrm{~W}=10^{-3} \mathrm{~J} \mathrm{~s}^{-1}$	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$	$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	$\hbar=1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	$c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$h c=2.0 \times 10^{-25} \mathrm{~J} \mathrm{~m}$	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	$e=1.602 \times 10^{-19} \mathrm{C}$
$\lambda v=c$	$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Cs}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3}$	$E=h \nu \quad \lambda=h / p$
$\ell_{\mathrm{n}}=m r v=n \hbar$	$r_{n}=n^{2} a_{0}$	$a_{0}=5.29 \times 10^{-11} \mathrm{~m}$
$\omega=2 \pi c \bar{\omega}=[k / \mu]^{1 / 2}$	$c=3 \times 10^{10} \mathrm{~cm} / s$	$x(t)=\sin \omega t$
$E_{v}=h c \bar{\omega}(v+1 / 2)$		

$$
\mathbf{x}=\left[\frac{\hbar}{4 \pi c \mu \bar{\omega}}\right]^{1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \quad \mathbf{p}=[\hbar \pi c \mu \bar{\omega}]^{1 / 2} i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)
$$

Particle in a box

$$
E_{n}=\frac{n^{2} \hbar^{2}}{8 m a^{2}}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}} \quad \psi_{n}(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)
$$

Harmonic Oscillator

$$
\begin{aligned}
& E_{n}=\left(n+\frac{1}{2}\right) h v=\left(n+\frac{1}{2}\right) \hbar \omega \quad \alpha=\frac{\sqrt{k \mu}}{\hbar}=\frac{\mu \omega}{\hbar} \quad \tilde{v}=\frac{1}{2 \pi c}\left(\frac{k}{\mu}\right)^{1 / 2}, \quad V=\frac{1}{2} \mu \omega^{2} x^{2} \\
& \int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}} \quad \int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}} \frac{1}{2 \alpha} \\
& \int_{-\infty}^{\infty} x^{2 n} e^{-\alpha x^{2}} d x=2 \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{\alpha}} \\
& \Psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2} \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \\
& \Psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2} \\
& \Psi_{3}(x)=\frac{1}{\sqrt{48}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(8 \alpha^{3 / 2} x^{3}-12 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2}
\end{aligned}
$$

Raising and lowering operators

$$
\begin{aligned}
& \hat{\mathbf{a}}=\left(\frac{\mu \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{\mathbf{x}}+i \frac{\hat{\mathbf{p}}}{\mu \omega}\right) \quad \hat{\mathbf{a}}^{\dagger}=\left(\frac{\mu \omega}{2 \hbar}\right)^{1 / 2}\left(\hat{\mathbf{x}}-i \frac{\hat{\mathbf{p}}}{\mu \omega}\right) \\
& \hat{\mathbf{x}}=\left(\frac{\hbar}{2 \mu \omega}\right)\left(\hat{\mathbf{a}}^{+}+\hat{\mathbf{a}}^{-}\right) \quad \hat{\mathbf{p}}=i\left(\frac{\mathrm{~h} \mu \omega}{2}\right)\left(\hat{\mathbf{a}}^{+}-\hat{\mathbf{a}}^{-}\right) \\
& \hat{\mathbf{a}}^{+}\left|\psi_{n}\right\rangle=\hat{\mathbf{a}}^{+}|n\rangle=\sqrt{n+1}\left|\psi_{n+1}\right\rangle=\sqrt{n+1}|n+1\rangle \\
& \hat{\mathbf{a}}^{-}\left|\psi_{n}\right\rangle=\hat{\mathbf{a}}^{-}|n\rangle=\sqrt{n}\left|\psi_{n-1}\right\rangle=\sqrt{n}|n-1\rangle \\
& \hat{\mathbf{a}}^{+}=\mathbf{a}^{\dagger}, \quad \mathbf{a}^{-}=\mathbf{a} \quad \text { (notation) }
\end{aligned}
$$

Hydrogen atom

Three-dimensional operators in spherical coordinates

$$
\begin{gathered}
\widehat{\mathbf{H}}(r, \theta, \phi)=-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]+V(r, \theta, \phi) \\
\hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \quad \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
U=\frac{-Z e^{2}}{4 \pi \varepsilon_{0} r}, \quad E_{n}=\frac{-Z^{2} e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}=\frac{-Z^{2}}{2 n^{2}}(\text { atomic units }) n=1,2,3, \ldots, \quad a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{\mu e^{2}}
\end{gathered}
$$

Radial integrals

$$
\int_{0}^{\infty} x^{n} e^{x / a} d x=n!a^{n+1}
$$

H atom spatial wavefunctions (where $\sigma=Z r / a_{0}$. In atomic units $a_{0}=1$ and $\sigma=Z r$.)

$n=1$	$\ell=0$	$m=0$	$\psi_{100}=\psi_{1 s}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\sigma}$
$n=2$	$\ell=0$	$m=0$	$\psi_{200}=\psi_{2 s}=\frac{1}{\sqrt{32 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}(2-\sigma) e^{-\sigma / 2}$
	$\ell=1$	$m=0$	$\psi_{210}=\psi_{2 p_{z}}=\frac{1}{\sqrt{32 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \sigma e^{-\sigma / 2} \cos \theta$
	$\ell=1$	$m= \pm 1$	$\psi_{21 \pm 1}=\frac{1}{\sqrt{64 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \sigma e^{-\sigma / 2} \sin \theta e^{ \pm i \phi}$
$n=3$	$\ell=0$	$m=0$	$\psi_{300}=\frac{1}{81 \sqrt{3 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(27-18 \sigma+2 \sigma^{2}\right) e^{-\sigma / 3}=\psi_{3 s}$

Perturbation Theory

$$
\begin{gathered}
\widehat{\mathbf{H}}=\widehat{\mathbf{H}}^{(0)}+\widehat{\mathbf{H}}^{(1)} \quad \psi_{n}=\psi_{n}^{(0)}+\psi_{n}^{(1)} \quad E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)} \\
E_{n}^{(1)}=\int \psi_{n}^{(0)^{*}} \widehat{\mathbf{H}}^{(1)} \psi_{n}^{(0)} d \tau=\left\langle\psi_{n}^{(0)^{*}}\right| \widehat{\mathbf{H}}^{(1)}\left|\psi_{n}^{(0)}\right\rangle \\
\psi_{n}^{(1)}=\sum_{j \neq n} \frac{\int \psi_{j}^{(0)^{*}} \widehat{\mathbf{H}}^{(1)} \psi_{n}^{(0)} d \tau}{E_{n}^{(0)}-E_{j}^{(0)}} \psi_{j}^{(0)}=\sum_{j \neq n} \frac{\left\langle\psi_{j}^{(0)^{*}}\right| \widehat{\mathbf{H}}^{(1)}\left|\psi_{n}^{(0)}\right\rangle}{E_{n}^{(0)}-E_{j}^{(0)}} \psi_{j}^{(0)} \\
E_{n}^{(2)}=\sum_{j \neq n} \frac{\widehat{H}_{n j}^{(1)} \widehat{H}_{j n}^{(1)}}{E_{n}^{(0)}-E_{j}^{(0)}}=E_{n}^{(2)}=\sum_{j \neq n} \frac{\langle n| \widehat{\mathbf{H}}^{(1)}|j\rangle\langle j| \widehat{\mathbf{H}}^{(1)}|n\rangle}{E_{n}^{(0)}-E_{j}^{(0)}}
\end{gathered}
$$

Spin operators

$$
\begin{gathered}
\mathbf{S}_{i}=\frac{\mathrm{h}}{2} \boldsymbol{\sigma}_{i} \quad \boldsymbol{\sigma}_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad \boldsymbol{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \boldsymbol{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\hat{\mathbf{S}}_{+}=\mathrm{h}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad \hat{\mathbf{S}}_{-}=\mathrm{h}\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \\
\hat{\mathbf{S}}_{ \pm}=\hat{\mathbf{S}}_{x} \pm i \hat{\mathbf{S}}_{y} \\
| \pm x\rangle=\frac{1}{\sqrt{2}}(|+z\rangle \pm|-z\rangle) \quad| \pm y\rangle=\frac{1}{\sqrt{2}}(|+z\rangle \pm i|-z\rangle) \\
|+n\rangle=\cos (\theta / 2)|+z\rangle+e^{i \phi} \sin (\theta / 2)|-z\rangle \\
|-n\rangle=\sin (\theta / 2)|+z\rangle-e^{i \phi} \cos (\theta / 2)|-z\rangle
\end{gathered}
$$

Turning points of $\boldsymbol{V}(\boldsymbol{x})$:

$$
\begin{aligned}
& V\left(x_{ \pm}(v)\right)=E(v) \\
& E(v)=h c \bar{\omega}(v+1 / 2)=\frac{1}{2} k\left[x_{ \pm}(v)\right]^{2}
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

