MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017

Professor Robert W. Field

FIFTY MINUTE EXAMINATION III Thursday,
November 30

Question	Possible Score	My Score
I	40	
II	30	
III	30	
Total	100	

Name:

I. LCAO-MO

A. (20 points) This problem deals with homonuclear diatomic molecules from the $\mathrm{Li}-\mathrm{Ne}$ row of the periodic table.
(i) (5 points) Draw an MO diagram for Be_{2} and use it to answer the two questions:
(a) (3 points) Is Be_{2} expected to be bound in its electronic ground state? Justify your answer.
(b) (2 points) Do you expect that the lowest energy excited state of Be_{2} is bound? Justify your answer.
(ii) (5 points) Electronic states of diatomic molecules are specified as ${ }^{2 S+1} \Lambda$ (Σ for $\Lambda=0, \Delta$ for $\Lambda=2$). A π^{2} configuration gives rise to three electronic states: ${ }^{3} \Sigma^{-},{ }^{1} \Delta$, and ${ }^{1} \Sigma^{+}$. Which one of these three states is predicted by Hund's first rule to have the lowest energy?
(iii) (5 points) Draw an MO diagram that explains why O_{2} has a triplet ground state. Explain why this is a safe prediction.
(iv) (5 points) A similar argument might predict that C_{2} also has a triplet ground state. The three lowest lying electronic configurations for C_{2} are:

$$
\begin{array}{ll}
\sigma_{g}(2 s)^{2} \sigma_{u}^{*}(2 s)^{2} \sigma_{g}(2 p)^{2} \pi_{u}(2 p)^{2}: & { }^{3} \Sigma_{g}^{-},{ }^{1} \Delta_{g},{ }^{1} \Sigma_{g}^{+} \\
\sigma_{g}(2 s)^{2} \sigma_{u}^{*}(2 s)^{2} \sigma_{g}(2 p)^{1} \pi_{u}(2 p)^{3}: & { }^{3} \Pi_{u},{ }^{1} \Pi_{u} \\
\sigma_{g}(2 s)^{2} \sigma_{u}^{*}(2 s)^{2} \sigma_{g}(2 p)^{0} \pi_{u}(2 p)^{4}: & { }^{1} \Sigma_{g}^{+}
\end{array}
$$

Show, using an MO diagram, why the O_{2}-like argument is unsafe for C_{2}. [HINT: the two σ_{g} orbitals derive from the 2 s and 2 p AOs, which are relatively close in energy for carbon.]
B. (10 points) Isoelectronic molecules with 8 valence electrons: $\mathrm{C}_{2}, \mathrm{BN}, \mathrm{BeO}$, LiF.

The vibrational frequencies in the electronic ground states of these four molecules are $\mathrm{C}_{2}: \omega_{e}=1855 \mathrm{~cm}^{-1}, \mathrm{BN}: 1515 \mathrm{~cm}^{-1}$, $\mathrm{BeO}: 1489$ cm^{-1}, LiF: $910 \mathrm{~cm}^{-1}$. Use MO diagrams to explain this trend in bond order.
C. (10 points) The $X^{1} \Sigma_{g}^{+}$Electronic Ground States of Homologous Molecules: N_{2} and P_{2}.

$$
\underline{\omega}_{e} \quad \underline{\mathrm{R}}_{e}
$$

N_{2}	$2359 \mathrm{~cm}^{-1}$	$1.10 \AA$	extremely stable and non-reactive
P_{2}	$781 \mathrm{~cm}^{-1}$	$1.89 \AA$	extremely unstable and reactive

These molecular constants suggest that N_{2} has a triple bond while P_{2} has a single bond. Given that the electronic ground state configuration in N_{2} is

$$
\sigma_{g}(2 s)^{2} \sigma_{u}^{*}(2 s)^{2} \sigma_{g}(2 p)^{2} \pi_{u}(2 p)^{4}
$$

and

$$
\begin{array}{ll}
N\left(s^{2} p^{3}\right) \rightarrow N^{+}\left(s p^{3}\right) & \Delta E_{2 s}=164,100 \mathrm{~cm}^{-1}(h c) \\
P\left(s^{2} p^{3}\right) \rightarrow P^{+}\left(s p^{3}\right) & \Delta E_{3 s}=130,300 \mathrm{~cm}^{-1}(h c) \\
N\left(s^{2} p^{3}\right) \rightarrow N^{+}\left(s^{2} p^{2}\right) & \Delta E_{2 p}=117,400 \mathrm{~cm}^{-1}(h c) \\
P\left(s^{2} p^{3}\right) \rightarrow P^{+}\left(s^{2} p^{2}\right) & \Delta E_{3 p}=84,600 \mathrm{~cm}^{-1}(h c)
\end{array}
$$

Speculate about the $\sigma(3 \mathrm{~s})$ vs. $\sigma(3 \mathrm{p})$ vs. $\pi(3 \mathrm{p})$ dominant character of the single bond in P_{2} and the reason for the absence or weakness of the bonds associated with the other two normally bonding LCAOMO orbitals. Recall that the orbital ionization energy roughly determines the orbital radius and that the probability density in an orbital is proportional to r^{-3}.

(Blank page for calculations)

II. Hückel Theory

Consider the butadiene molecule, $\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

The four Hückel Theory orbital eigen-energies are

$$
\begin{aligned}
& \alpha+\beta\left[3+5^{1 / 2} / 2\right]^{1 / 2} \\
& \alpha+\beta\left[3-5^{1 / 2} / 2\right]^{1 / 2} \\
& \alpha-\beta\left[3+5^{1 / 2} / 2\right]^{1 / 2} \\
& \alpha-\beta\left[3-5^{1 / 2} / 2\right]^{1 / 2}
\end{aligned}
$$

and the four eigenvectors are
$\left(\begin{array}{l}-0.37 \\ 0.60 \\ -0.60 \\ 0.37\end{array}\right), \quad\left(\begin{array}{l}0.37 \\ 0.60 \\ 0.60 \\ 0.37\end{array}\right), \quad\left(\begin{array}{l}0.60 \\ -0.37 \\ -0.37 \\ 0.60\end{array}\right)$, and $\quad\left(\begin{array}{l}-0.60 \\ -0.37 \\ 0.37 \\ 0.60\end{array}\right)$
A. (5 points) Match each of the four orbital eigen-energies to the corresponding eigenvector. HINT: count the nodes and remember that both α and β are <0.
B. (13 points)
(i) (3 points) How many p_{z} electrons are there in the π-system of butadiene?
(ii) (3 points) Specify the number of electrons in each of the four orbitals.
(iii) (7 points) For only the Highest energy Occupied Molecular Orbital (HOMO), specify the non-integer number of π-electrons on each of the carbon atoms.
C. (7 points) Calculate the total bond-order between atoms 1 and 2 and between atoms 2 and 3. For a doubly occupied orbital, the bond order between atoms a and b is
$\mathrm{O}_{a b}=2 \mathrm{c}_{a} \mathrm{c}_{b}$
and the total bond-order between atoms a and b is given by the sum over all of the occupied molecular orbitals.
D. (5 points) Calculate the bond-order between atoms 1 and 4 . Why is this calculated bond-order surprising?

(Blank page for calculations)

III. Many Electron Atoms and "Shielding"

(30 POINTS)
The lowest energy electronic configuration for Sc is $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}$. This notation means the electronic configuration of Ar plus $4 s^{2} 3 d^{1}$.
A. (6 points) If we remove one electron from the electronic ground state of Sc , we have Sc^{+}in one of the two possible configurations:

Express the energy of the two configurations using the symbols

$\varepsilon_{4 \mathrm{~s}}$	Energy of the 4s orbital
$\varepsilon_{3 \mathrm{~d}}$	Energy of the 3d orbital
$\mathrm{J}_{454 \mathrm{~s}}$	Coulomb integral between 4s and 4s
$\mathrm{J}_{453 \mathrm{~d}}$	Coulomb integral between 4s and 3d
$\mathrm{J}_{3 \mathrm{~d} 3 \mathrm{~d}}$	Coulomb integral between 3d and 3d
$\mathrm{K}_{453 \mathrm{~d}}$	Exchange integral between 4s and 3d

B (2 points) The values of several of these integrals are found to be (in atomic units)
$\mathrm{J}_{4 \mathrm{ss4}}=0.303$
$\mathrm{J}_{4 \mathrm{~s} 3 \mathrm{~d}}=0.150$
$\mathrm{K}_{4 \mathrm{~s} 3 \mathrm{~d}}=0.002$
$\mathrm{J}_{454 \mathrm{~s}}$ is larger than $\mathrm{J}_{453 \mathrm{~d}}$. Why is this consistent with our expectations?
C. (4 points) For Sc^{2+} the experimentally measured energy difference between the $[\mathrm{Ar}] 4 \mathrm{~s}^{1}$ and $[\mathrm{Ar}] 3 \mathrm{~d}^{1}$ configurations is

$$
\varepsilon_{4 \mathrm{~s}}-\varepsilon_{3 \mathrm{~d}}=0.1164 .
$$

Going from Sc^{2+} to Sc^{+}, use the cited numerical values of ε, J , and K to determine which of the $\mathrm{Sc}^{+}[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$ or $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$ configurations has the lowest energy. Which configuration is more stable?
D. (6 points) Next we consider the high-spin and low-spin energy states of Sc^{+}in the $[\mathrm{Ar}] 4 \mathrm{~s} 3 \mathrm{~d}$ configuration

Calculate the energies of configurations \boldsymbol{C} and \boldsymbol{D} and express your answer in terms of the relevant symbols.
E. (4 points) Which configuration, \boldsymbol{C} (high-spin) or \boldsymbol{D} (low-spin) is more stable?

You do not need to do a numerical calculation to answer this question. Why?
F. (3 points) Your answers to parts \mathbf{A} and \mathbf{B} are surprising because the lowest energy state for the iso-electronic atom, Ca , is $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$. Suggest a possible explanation for why the lowest energy state for Ca comes from the $[\mathrm{Ar}] 4 s^{2}$ configuration and the lowest energy state for Sc^{+} comes from the $[A r] 4 s^{l} 3 d^{l}$ configuration.
G. (5 points) In parts A and \mathbf{B} you were given numerical values for some Coulomb and exchange integrals. Without a computer, you cannot derive values for \mathbf{J} and K integrals. However, you should be able to predict which one of a pair of integrals is larger. [All of the integrals express electron-electron repulsion, thus are all positive.] For each of the following pairs of integrals, specify which one is larger and, briefly, why it is larger:

$$
\begin{array}{lll}
J_{1 s, 2 s} & \text { vs. } & J_{1 s, 4 s} \\
J_{1 s, 1 s} & \text { vs. } & J_{1 s, 2 s} \\
J_{1 s, 1 s} & \text { vs. } & J_{10 s, 10 s} \\
K_{2 s, 2 p_{z}} & \text { vs. } & K_{2 p_{x}, 2 p_{z}} \\
J_{2 s, 2 s} & \text { vs. } & K_{2 s, 2 s}
\end{array}
$$

(Blank page for calculations)

Some Possibly Useful Constants and Formulas

$$
\begin{array}{ll}
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \hbar=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Cs}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & c=\lambda v \\
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} & m_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & e=1.602 \times 10^{-19} \mathrm{C} \\
E=h v & a_{0}=5.29 \times 10^{-11} \mathrm{~m} \quad \lambda=h / p \\
\bar{v}=\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) & \text { where } R_{H}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}=109,678 \mathrm{~cm}^{-1}
\end{array}
$$

Free particle:

$E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

Particle in a box:

$$
E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2}=E_{1} n^{2} \quad \psi(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2, \ldots
$$

Harmonic oscillator:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad[$ units of ω are radians $/ s]$
$\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \quad \psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2}$
$\hat{\tilde{x}} \equiv \sqrt{\frac{m \omega}{\hbar}} \hat{x}$
$\hat{\tilde{p}} \equiv \sqrt{\frac{1}{\hbar m \omega}} \hat{p} \quad$ [units of ω are radians $/ s$]
$\mathbf{a} \equiv \frac{1}{\sqrt{2}}(\hat{\tilde{x}}+i \hat{\tilde{p}})$
$\frac{\hat{H}}{\hbar \omega}=\mathbf{a a}^{\dagger}-\frac{1}{2}=\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2} \quad \hat{\mathbf{N}}=\mathbf{a}^{\dagger} \mathbf{a}$
$\mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{\tilde{x}}-i \hat{\tilde{p}})$
$2 \pi c \tilde{\omega}=\omega \quad\left[\right.$ units of $\tilde{\omega}$ are cm ${ }^{-1}$]

Semi-Classical

$\lambda=h / p$
$p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
period: $\tau=1 / \nu=2 \pi / \omega$

For a thin barrier of width ε where ε is very small, located at x_{0}, and height $V\left(x_{0}\right)$:

$$
H_{n n}^{(1)}=\int_{x_{0}-\varepsilon / 2}^{x_{0}+\varepsilon / 2} \psi_{n}^{(0)^{*}} V(x) \psi_{n}^{(0)} d x=\varepsilon V\left(x_{0}\right)\left|\psi_{n}^{(0)}\left(x_{0}\right)\right|^{2}
$$

Perturbation Theory

$E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}$
$\psi_{n}=\psi_{n}^{(0)}+\psi_{n}^{(1)}$
$E_{n}^{(1)}=\int \psi_{n}^{(0) *} \widehat{H}^{(1)} \psi_{n}^{(0)} d x=H_{n n}^{(1)}$
$\psi_{n}^{(1)}=\sum_{m \neq n} \frac{H_{n m}^{(1)}}{E_{n}^{(0)}-E_{m}^{(0)}} \psi_{m}^{(0)}$
$E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{n m}^{(1)}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

