MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017
Professor Robert W. Field

FIFTY MINUTE EXAMINATION II ANSWERS

Thursday, October 26 @ 7:30 PM in 4-370
I. \mathbf{a}^{\dagger} and a Matrices
A. (3 points) $\quad\langle v+1| \mathbf{a}^{\dagger}|v\rangle=(v+1)^{1 / 2}$. Sketch the structure of the \mathbf{a}^{\dagger} matrix below:

B. (3 points) Now sketch the a matrix on a similar diagram.

C. (5 points) Now apply \mathbf{a}^{\dagger} to the column vector that corresponds to $|v=3\rangle$.

$$
|v=3\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array}\right) \begin{gathered}
v=0 \\
2
\end{gathered} \mathbf{a}^{\dagger}|v=3\rangle=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
2 \\
3 \\
4 \\
\end{array}\right.
$$

D. (3 points) Is a ${ }^{\dagger}$ Hermitian?
\mathbf{a}^{\dagger} is not Hermitian because

$$
\begin{aligned}
& \mathbf{a}_{v+1, v}^{\dagger}=[v+1]^{1 / 2} \\
& \mathbf{a}_{v, v+1}^{\dagger}=0 \\
& \left(\mathbf{a}_{v, v+1}^{\dagger}\right)^{*}=0^{*}=0
\end{aligned}
$$

Thus $\mathbf{a}_{v+1, v}^{\dagger}=\left(\mathbf{a}_{v, v+1}^{\dagger}\right)^{*}$
This is confusing because $\left(\mathbf{a}^{\dagger}\right)^{*}=\mathbf{a}$ and

$$
\left(\mathbf{a}^{\dagger}\right)_{v+1, v}=\left(\mathbf{a}^{\dagger}\right)_{v, v+1}^{*}=(\mathbf{a})_{v, v+1} .
$$

Extra credit for mention of this paradox.
E. (3 points) Is $\left(\mathbf{a}^{\dagger}+\mathbf{a}\right)$ Hermitian? If it is, demonstrate it by the relationship between a matrix element that is the definition of a Hermitian operator.
$\left(\mathbf{a}^{\dagger}+\mathbf{a}\right)$ is Hermitian because $\left(\mathbf{a}^{\dagger}+\mathbf{a}\right)^{*}=\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)$.
(i) Also $\mathbf{a}^{\dagger}+\mathbf{a}=\widetilde{X}$ and we know that \widetilde{X} is Hermitian because expectation values of \mathbf{X} are real, never complex or imaginary.
(ii) Also

$$
\begin{aligned}
& \left(\mathbf{a}^{\dagger}+\mathbf{a}\right)_{v+1, v}=\mathbf{a}_{v+1, v}^{\dagger}+\mathbf{a}_{v+1, v}=(v+1)^{1 / 2}+0 \\
& \left(\mathbf{a}^{\dagger}+\mathbf{a}\right)_{v, v+1}=\mathbf{a}_{v, v+1}^{\dagger}+\mathbf{a}_{v, v+1}=0+(v+1)^{1 / 2}
\end{aligned}
$$

Since the matrix elements are real, the conjugate transpose of $\left(\mathbf{a}^{\dagger}+\mathbf{a}\right)$ is $\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)$.
F. (3 points) Is $i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)$ Hermitian? If it is, use a matrix element relationship similar to what you used for part \mathbf{E}.

$$
\begin{aligned}
& \tilde{p}=i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \\
& \tilde{p} \text { is Hermitian, thus } \mathrm{i}\left(\mathbf{a}^{\dagger}-\mathbf{a}\right) \text { is Hermitian. } \\
& \text { Also } \\
& \begin{aligned}
{\left[i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)\right]_{v+1, v} } & =i \mathbf{a}_{v+1, v}^{\dagger}-i \mathbf{a}_{v+1, v} \\
& =i(v+1)^{1 / 2}-i 0
\end{aligned} \\
& {\left[i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)\right]_{v, v+1}^{*}=-i 0+i(v+1)^{1 / 2}}
\end{aligned}
$$

II. The Road to Quantum Beats

Consider the 3-level \mathbf{H} matrix

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{ccc}
10 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -10
\end{array}\right)
$$

Label the eigen-energies and eigen-functions according to the dominant basis state character. The $\widetilde{10}$ state is the one dominated by the zero-order state with $E^{(0)}=10, \tilde{0}$ by $E^{(0)}=0$, and $-\widetilde{10}$ by $E^{(0)}=-10$.
A. (6 points) Use non-degenerate perturbation theory to derive the energies
[HINT: $\mathbf{H}^{(0)}$ is diagonal, $\mathbf{H}^{(1)}$ is non-diagonal]:
(i) $\quad E_{\widetilde{10}}=10+\frac{1^{2}}{10-0}=10.1$
(ii) $\quad E_{\tilde{0}}=0+\frac{1^{2}}{0-10}+\frac{2^{2}}{0-(-10)}=0-\frac{1}{10}+\frac{4}{10}=\frac{3}{10}$
(iii)

$$
E_{-\widetilde{10}}=-10+\frac{4^{2}}{-10-0}=-10-1.6=-11.6
$$

B. (6 points) Use non-degenerate perturbation theory to derive the eigenfunctions [HINT: do not normalize]
(i) $\quad \psi_{\widetilde{10}}=\psi_{10}+\frac{1}{10-0} \psi_{0}=\psi_{10}+\frac{1}{10} \psi_{0}$
(ii) $\quad \psi_{\tilde{0}}=\psi_{0}+\frac{1}{0-10} \psi_{10}+\frac{2}{0-(-10)} \psi_{-10}=\psi_{0}-\frac{1}{10} \psi_{10}+\frac{2}{10} \psi_{-10}$
(iii) $\quad \psi_{-\widetilde{10}}=\psi_{-10}+\frac{2}{-10-0} \psi_{0}=\psi_{-10}-\frac{2}{10} \psi_{0}$
C. (5 points) Demonstrate the approximate relationship: $\int \psi_{-\widetilde{10}} \mathbf{H} \psi_{-\widetilde{10}} d x \approx E_{-\widetilde{0}}$ [HINT: do not normalize].

$$
\begin{aligned}
\int \psi_{-\widetilde{10}}^{*} \mathbf{H} \psi_{-\widetilde{10}} d x & =\int\left(\psi_{-10}-0.2 \psi_{0}\right)^{*} \mathbf{H}\left(\psi_{-10}-0.2 \psi_{0}\right) d x \\
& =\mathbf{H}_{-10,-10}+0.04 \mathbf{H}_{0,0}-0.2 \mathbf{H}_{-10,0}-0.2 \mathbf{H}_{0,-10} \\
& =-10+0-(0.4) 2=-10.8 \\
\int \psi_{-\widetilde{10}} \psi_{-\widetilde{10}} d x= & \int \psi_{-\widetilde{10}} \psi_{-\widetilde{10}} d x+\left(\frac{2}{10}\right)^{2} \int \psi_{0} \psi_{0} d x=1+0.04=1.04
\end{aligned}
$$

Normalized: $\frac{-10.8}{1.04}=-10.38$ which is closest to $E_{-\widetilde{10}}=-11.6$.
D. (8 points) Use the results from part \mathbf{B} to write the elements of the \mathbf{T}^{\dagger} matrix that non-degenerate perturbation theory promises will give a nearly diagonal

$$
\tilde{\mathbf{H}}=\mathbf{T}^{\dagger} \mathbf{H T}
$$

matrix [do not normalize].
We know that $\mathbf{T}^{\dagger} \mathbf{H T}=\widetilde{\mathbf{H}}=\left(\begin{array}{ccc}E_{\widetilde{10}} & 0 & 0 \\ 0 & E_{\widetilde{10}} & 0 \\ 0 & 0 & E_{-\widetilde{10}}\end{array}\right)$
and that the columns of \mathbf{T}^{\dagger} are the eigenvectors

$$
\begin{gathered}
\psi_{\widetilde{10}} \\
\psi_{\tilde{0}} \\
\psi_{-\widetilde{10}} \\
\mathbf{T}^{\dagger}=\left(\begin{array}{ccc}
1 & -\frac{1}{10} & 0 \\
0.1 & 1 & -0.2 \\
0 & \frac{2}{10} & 1
\end{array}\right) \begin{array}{c}
\psi_{10} \\
\psi_{0} \\
\psi_{-10}
\end{array}
\end{gathered}
$$

E. (6 points) Suppose, at $t=0$, you prepare a state $\Psi(x, 0)=\psi_{0}^{(0)}(x)$. Use the correct elements of the \mathbf{T}^{\dagger} matrix to write $\Psi(x, 0)$ as a linear combination of the eigenstates, $\psi_{\widetilde{10}}, \psi_{\tilde{0}}$, and $\psi_{-\widetilde{10}}$ [do not normalize]:
We want one of the rows of \mathbf{T}^{\dagger}. We want the ψ_{0} row $\Psi(x, 0)=(0.1) \psi_{\widetilde{10}}+(1.0) \psi_{\tilde{0}}-0.2 \psi_{\widetilde{10}}$
F. (4 points) For the $\Psi(x, 0)=c_{\widetilde{10}} \psi_{\widetilde{10}}+c_{\tilde{0}} \psi_{\widetilde{0}}+c_{-\widetilde{10}} \psi_{-\widetilde{10}}$ initial state you derived in part \mathbf{E}, write $\Psi(x, t)$ (do not normalize). If you do not believe your derived $c_{\widetilde{10}}, c_{\tilde{0}}$, and $c_{-\widetilde{10}}$ constants, leave them as symbols.

$$
\begin{aligned}
\Psi(x, t) & =0.1 e^{-i E_{\tilde{10}} t / \hbar} \psi_{\widetilde{10}}+1.0 e^{-i E_{0} t / \hbar} \psi_{\tilde{0}}-0.2 e^{-i E_{-\widetilde{10}}{ }^{t} / \hbar} \psi_{-\widetilde{0}} \\
& =0.1 e^{-i(10.1) t / \hbar} \psi_{\widetilde{10}}+1.0 e^{-i(0.3) t / \hbar} \psi_{\tilde{0}}-0.2 e^{-i(-11.6) t / \hbar} \psi_{\widetilde{10}}
\end{aligned}
$$

G. (6 points) If you obtained an answer you believe in part \mathbf{G}, you will have discovered quantum beats. Even if you are not convinced that your answer to part \mathbf{G} is correct, you will receive partial credit for being as explicit as you can be about $P_{0}(t)$:
(i) What is the value of $P_{0}(0)$?
$P_{0}(0)=0$. You prepared $\psi(x, 0)=\psi_{0}$ so $P_{0}(t=0)=1$.
(ii) The contribution of the zero-order $\psi_{0}^{(0)}$ state to the observed fluorescence will be modulated at some easily predicted frequencies. What are these frequencies?
The frequencies will be

$$
\begin{array}{lll}
\frac{\left(E_{\widetilde{10}}-E_{\tilde{0}}\right)}{\hbar}, & \frac{\left(E_{\widetilde{10}}-E_{-\widetilde{10}}\right)}{\hbar}, & \text { and } \\
\frac{\left(E_{\tilde{0}}-E_{-\widetilde{10}}\right)}{\hbar} \\
\frac{10.1-0.3}{\hbar} & \frac{10.1-(-11.6)}{\hbar} & \frac{0.3-(-11.6)}{\hbar} \\
\frac{9.8}{\hbar} & \frac{21.7}{\hbar} & \frac{11.9}{\hbar}
\end{array}
$$

These are "quantum beats". You could also compute the amplitudes of each frequency, but that would be a tedious calculation.

III. Inter-Mode Anharmonicity in a Triatomic Molecule

Consider a nonlinear triatomic molecule. There are three vibrational normal modes, as specific in $\mathbf{H}^{(0)}$ and two anharmonic inter-mode interaction terms, as specified in $\mathbf{H}^{(1)}$.

$$
\begin{aligned}
\frac{\mathbf{H}^{(0)}}{h c} & =\tilde{\omega}_{1}\left(\mathbf{N}_{1}+1 / 2\right)+\tilde{\omega}_{2}\left(\mathbf{N}_{2}+1 / 2\right)+\tilde{\omega}_{3}\left(\mathbf{N}_{3}+1 / 2\right) \\
\mathbf{H}^{(1)} & =k_{122} Q_{1} Q_{2}^{2}+k_{2233} Q_{2}^{2} Q_{3}^{2}
\end{aligned}
$$

A. (2 points) List all of the $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)$ combined selection rules for nonzero matrix elements of the k_{122} term in $\mathbf{H}^{(1)}$? One of these selection rules is $(+1,+2,0)$.
The k_{122} term gives $\Delta v_{1}= \pm 1, \Delta v_{2}=0, \pm 2$ and $\Delta v_{3}=0$. So we have
$\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)=(1,2,0)$

$$
\begin{aligned}
& (1,0,0) \\
& (1,-2,0) \\
& (-1,2,0) \\
& (-1,0,0) \\
& (-1,-2,0)
\end{aligned}
$$

B. (2 points) List all of the $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)$ selection rules for nonzero matrix elements of the k_{2233} term in $\mathbf{H}^{(1)}$?
The k_{2233} term gives $\Delta v_{1}=0, \Delta v_{2}= \pm 2,0$ and $\Delta v_{3}=0, \pm 2$. So now we have $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)=(0,2,2)$

$$
(0,2,0)
$$

$$
(0,2,-2)
$$

$$
(0,0,2)
$$

$$
(0,0,0)
$$

$$
(0,0,-2)
$$

$$
(0,-2,2)
$$

$$
(0,-2,0)
$$

$$
0,-2,-2)
$$

C. (2 points) In the table below, in the last column, place an X next to the intermode vibrational anharmonicity term to which the k_{2233} term contributes .

(i)	$\widetilde{\omega_{e} x_{e_{12}}}\left(v_{1}+1 / 2\right)\left(v_{2}+1 / 2\right)$	
(ii)	$\widetilde{\omega_{e} x_{e_{23}}}\left(v_{2}+1 / 2\right)\left(v_{3}+1 / 2\right)$	\mathbf{X}
(iii)	$\widetilde{\omega_{e} z_{e_{223}}}\left(v_{2}+1 / 2\right)^{2}\left(v_{3}+1 / 2\right)^{2}$	

We get $\omega_{e} x_{e_{23}}\left(v_{2}+1 / 2\right)\left(v_{3}+1 / 2\right)$ from $\mathbf{H}_{v_{1}, v_{2}, v_{3}, v_{1}, v_{2}, v_{3}}^{(1)}=E_{v_{1}, v_{2}, v_{3}}^{(1)}$. We also get contributions to this term from $E_{v_{1}, v_{2}, v_{3}}^{(2)}$.
D. (2 points) Does the term you specified in part \mathbf{C} depend on the sign of k_{2233} ? The contributions from the $E_{v_{1}, v_{2}, v_{3}}^{(1)}$ term does depend on the sign of k_{2233} because there is a $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)=(0,0,0)$ diagonal matrix element of $k_{2233} \mathbf{Q}_{2}^{2} \mathbf{Q}_{3}^{2}$.
E. (2 points) Does the k_{122} term in $\mathbf{H}^{(1)}$ give rise to any vibrational anharmonicity terms that are sensitive to the sign of k_{122} ? Justify your answer.
The k_{122} term cannot give any vibrational anharmonicity terms that depend on the sign of k_{122} becaue of the $\Delta v_{1}= \pm 1$ selection rule.

IV. Your First Encounter with a
 (19 POINTS +2 extra credit) Non-Rigid Rotor

Your goal in this problem is to compute the v-dependence of the rotational constant of a harmonic oscillator.

Some equations that you will need:

$$
\begin{aligned}
& B(R)=\frac{\hbar^{2}}{4 \pi c \mu} R^{-2}, \quad B_{e}=\frac{\hbar^{2}}{4 \pi c \mu} R_{e}^{-2} \\
& \hat{\mathbf{Q}} \equiv R-R_{e}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \\
& \frac{1}{R^{2}}=\frac{1}{\left(\mathbf{Q}+R_{e}\right)^{2}}=\frac{1}{R_{e}^{2}}\left(\frac{\mathbf{Q}}{R_{e}}+1\right)^{-2}
\end{aligned}
$$

Power series expansion:

$$
\frac{1}{R^{2}}=\frac{1}{R_{e}^{2}}\left[1-2\left(\frac{\mathbf{Q}}{R_{e}}\right)+3\left(\frac{\mathbf{Q}}{R_{e}}\right)^{2}-4\left(\frac{\mathbf{Q}}{R_{e}}\right)^{3}+\ldots\right],
$$

thus

$$
B(R)=B_{e}\left[1-2\left(\frac{\mathbf{Q}}{R_{e}}\right)+3\left(\frac{\mathbf{Q}}{R_{e}}\right)^{2}-\ldots\right]
$$

Some algebra yields

$$
\begin{equation*}
\frac{\mathbf{Q}}{R_{e}}=\left(\frac{B_{e}}{\omega_{e}}\right)^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \tag{1}
\end{equation*}
$$

where $\left(\frac{B_{e}}{\omega_{e}}\right) \approx 10^{-3}$, an excellent order-sorting parameter.

$$
\begin{equation*}
\hat{\mathbf{H}}^{\mathrm{ROT}}=h c B_{e} J(J+1)\left[1-2\left(\frac{B_{e}}{\omega_{e}}\right)^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)+3\left(\frac{B_{e}}{\omega_{e}}\right)\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2}-\ldots\right] \tag{2}
\end{equation*}
$$

A. (3 points) From boxed equation (2), what is $\hat{\mathbf{H}}^{(0)}$?
$\mathbf{H}^{(0)}=h c B_{e} J(J+1)$.
B. (3 points) What is $\hat{\mathbf{H}}^{(1)}$?
$\mathbf{H}^{(1)}=h c B_{e} J(J+1)\left[-2\left(\frac{B_{e}}{\omega_{e}}\right)^{1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)+3\left(\frac{B_{e}}{\omega_{e}}\right)\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}+\ldots\right]$
C. $(6$ points $) \quad E_{J}=E_{J}^{(0)}+E_{J}^{(1)}+E_{J}^{(2)}$.

What is $E_{J}^{(0)}$, as a function of $h c, B_{e}$, and $J(J+1)$?
$E_{J}^{(0)}=h c B_{e} J(J+1)$
What is $E_{J}^{(1)}$, as a function of $h c, B_{e}, \omega_{e}$, and $J(J+1)$?

$$
\begin{aligned}
& E_{J, v}^{(1)}=h c B_{e} J(J+1) 3\left(\frac{B_{e}}{\omega_{e}}\right)(2 \mathbf{N}+1) \\
& 2 \mathbf{N}+1=2(v+1 / 2)
\end{aligned}
$$

D. (5 points) From experiment we measure

$$
\begin{aligned}
& E_{J}=E_{J}^{(0)}+E_{J}^{(1)} \\
& B_{v}=B_{e}-\alpha_{e}(v+1 / 2), \quad B_{v+1}-B_{v}=-\alpha_{e} .
\end{aligned}
$$

What is α_{e} expressed in terms of $h c, B_{e}$, and ω_{e} ?

$$
\begin{aligned}
& E_{J, v}^{(1)}=h c J(J+1)(v+1 / 2) 6 B_{e}^{2} / \omega_{e} \\
& \alpha_{e}=-6 h c B_{e}^{2} / \omega_{e}
\end{aligned}
$$

E. (2 points extra credit) Does the sign of α_{e} bother you? Why?

One might expect that as v increases, B_{v} will decrease. This is correct for an anharmonic non-rigid rotor. However, for a harmonic non-rigid rotor, B_{v} will increase with v. This occurs because $B(\mathbf{R})$ increases more at the inner turning point than it decreases at the outer turning point.

V. Derivation of One Part of the Angular (10 POINTS) Momentum Commutation Rule

$$
\begin{align*}
& \overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} x \overrightarrow{\mathbf{p}}=\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right)=\hat{i}\left(y p_{z}-z p_{y}\right)-\hat{j}\left(x p_{z}-z p_{x}\right)+\hat{k}\left(x p_{y}-y p_{x}\right) \tag{1}\\
& {\left[\mathbf{x}, \mathbf{p}_{x}\right]=i \hbar} \tag{2}\\
& {\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right]=+\mathbf{i} \hbar \mathbf{L}_{z}} \tag{3}
\end{align*}
$$

Use equations (1) and (2) to derive equation (3).
From Eq. (1) we have

$$
\begin{aligned}
L_{x} & =y p_{z}-z p_{y} \\
L_{y} & =z p_{x}-x p_{z} \\
{\left[L_{x}, L_{y}\right] } & =\left[y p_{z}-z p_{y}, z p_{x}-x p_{z}\right] \\
& =\left[y p_{z}, z p_{x}\right]-\left[y p_{z}, x p_{z}\right]-\left[z p_{y}, z p_{x}\right]+\left[z p_{y}, x p_{z}\right] \\
& =y\left[p_{z}, z\right] p_{x}-0-0+x\left[z, p_{z}\right] p_{y}
\end{aligned}
$$

$$
\left[x, p_{x}\right]=i \hbar
$$

$$
\left[L_{x}, L_{y}\right]=y p_{x}(-i \hbar)+x p_{y}(i \hbar)
$$

$$
=i \hbar\left[x p_{y}-y p_{x}\right]
$$

but we know from Eq. (1) that $L_{z}=x p_{y}-y p_{x}$, thus $\left[L_{x}, L_{y}\right]=i \hbar L_{z}$ as required.

Some Possibly Useful Constants and Formulas

$$
\begin{array}{lll}
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \hbar=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Cs}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} & \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & c=\lambda v & \\
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} & m_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg} & \lambda=h / p \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & e=1.602 \times 10^{-19} \mathrm{C} & \\
E=h v & a_{0}=5.29 \times 10^{-11} \mathrm{~m} & e^{ \pm i \theta}=\cos \theta \pm i \sin \theta \\
\bar{v}=\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) & \text { where } R_{H}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} \mathrm{c}}=109,678 \mathrm{~cm}^{-1}
\end{array}
$$

Free particle:

$E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

Particle in a box:

$E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2}=E_{1} n^{2} \quad \psi(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2, \ldots$

Harmonic oscillator:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad[$ units of ω are radians $/ s]$
$\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \quad \psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2}$
$\hat{\tilde{x}} \equiv \sqrt{\frac{m \omega}{\hbar}} \hat{x}$
$\hat{\tilde{p}} \equiv \sqrt{\frac{1}{\hbar m \omega}} \hat{p} \quad$ [units of ω are radians $/ s$]
$\mathbf{a} \equiv \frac{1}{\sqrt{2}}(\hat{\tilde{x}}+i \hat{\tilde{p}})$
$\frac{\hat{H}}{\hbar \omega}=\mathbf{a a}^{\dagger}-\frac{1}{2}=\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2} \quad \hat{\mathbf{N}}=\mathbf{a}^{\dagger} \mathbf{a}$
$\mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{\tilde{x}}-i \hat{\tilde{p}})$
$2 \pi c \tilde{\omega}=\omega \quad\left[\right.$ units of $\tilde{\omega}$ are cm $^{-1}$]

Semi-Classical

$\lambda=h / p$
$p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
period: $\tau=1 / \nu=2 \pi / \omega$
For a thin barrier of width ε where ε is very small, located at x_{0}, and height $V\left(x_{0}\right)$:

$$
H_{n n}^{(1)}=\int_{x_{0}-\varepsilon / 2}^{x_{0}+\varepsilon / 2} \psi_{n}^{(0)^{*}} V(x) \psi_{n}^{(0)} d x=\varepsilon V\left(x_{0}\right)\left|\psi_{n}^{(0)}\left(x_{0}\right)\right|^{2}
$$

Perturbation Theory

$E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}$
$\psi_{n}=\psi_{n}^{(0)}+\psi_{n}^{(1)}$
$E_{n}^{(1)}=\int \psi_{n}^{(0)^{*}} \widehat{H}^{(1)} \psi_{n}^{(0)} d x=H_{n n}^{(1)}$
$\psi_{n}^{(1)}=\sum_{m \neq n} \frac{H_{n m}^{(1)}}{E_{n}^{(0)}-E_{m}^{(0)}} \psi_{m}^{(0)}$
$E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{n m}^{(1)}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

