MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry Fall, 2017

Professor Robert W. Field

FIFTY MINUTE EXAMINATION II

Thursday, October 26

Question	Possible Score	Extra Credit	My Score
Ι	20		
II	41		
III	10		
IV	19	2	
V	10		
Total	100	2	

Name:

I. a^{\dagger} and a Matrices

(20 POINTS)

A. (3 points) $\langle v+1|\mathbf{a}^{\dagger}|v\rangle = (v+1)^{1/2}$. Sketch the structure of the \mathbf{a}^{\dagger} matrix below:

B. (3 points) Now sketch the **a** matrix on a similar diagram.

C. (5 points) Now apply \mathbf{a}^{\dagger} to the column vector that corresponds to $|v=3\rangle$.

D. (3 points) Is \mathbf{a}^{\dagger} Hermitian?

E. (3 points) Is $(a^{\dagger} + a)$ Hermitian? If it is, demonstrate it by the relationship between matrix elements that is the definition of a Hermitian operator.

F. (3 points) Is $i(\mathbf{a}^{\dagger} - \mathbf{a})$ Hermitian? If it is, use a matrix element relationship similar to what you used for part E.

(41 POINTS)

II. The Road to Quantum Beats

Consider the 3-level **H** matrix

$$\mathbf{H} = \hbar \omega \left(\begin{array}{rrr} 10 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -10 \end{array} \right)$$

Label the eigen-energies and eigen-functions according to the dominant basis state character. The 10 state is the one dominated by the zero-order state with $E^{(0)} = 10$, $\tilde{0}$ by $E^{(0)} = 0$, and -10 by $E^{(0)} = -10$.

- A. (6 points) Use non-degenerate perturbation theory to derive the energies [HINT: $\mathbf{H}^{(0)}$ is diagonal, $\mathbf{H}^{(1)}$ is non-diagonal]:
 - (i) $E_{10} =$

(ii)
$$E_{\tilde{0}} =$$

(iii)
$$E_{-\tilde{10}} =$$

- **B**. (6 points) Use non-degenerate perturbation theory to derive the eigenfunctions [HINT: do not normalize]
 - (i) $\psi_{10} =$

(ii) $\psi_{\tilde{0}} =$

(iii) $\psi_{-\tilde{10}} =$

C. (5 points) Demonstrate the *approximate* relationship: $\int \psi_{-10} \mathbf{H} \psi_{-10} dx \approx E_{-10}$ [HINT: normalize by dividing by $\int \psi_{-10}^* \psi_{-10} dx$.]

D. (4 points) Use the results from part **B** to write the elements of the \mathbf{T}^{\dagger} matrix that non-degenerate perturbation theory promises will give a *nearly diagonal*

$\tilde{\mathbf{H}} = \mathbf{T}^{\dagger}\mathbf{H}\mathbf{T}$

matrix [do not normalize, and do not compute $T^{\dagger}HT$].

E. (6 points) Suppose, at t = 0, you prepare a state $\Psi(x, 0) = \psi_0^{(0)}(x)$. Use the correct elements of the \mathbf{T}^{\dagger} matrix to write $\Psi(x, 0)$ as a linear combination of the eigenstates, ψ_{10}, ψ_0 , and ψ_{-10} [HINT: the columns of \mathbf{T} are the rows of \mathbf{T}^{\dagger} .]:

5.61 Exam II

F. (4 points) For the $\Psi(x,0) = c_{\overline{10}}\psi_{\overline{10}} + c_{\overline{0}}\psi_{\overline{0}} + c_{-\overline{10}}\psi_{-\overline{10}}$ initial state you derived in part **E**, write $\Psi(x, t)$ (do not normalize). If you do not believe your derived $c_{\overline{10}}$, $c_{\overline{0}}$, and $c_{-\overline{10}}$ constants, leave them as symbols.

G. (10 points) Suppose you do an experiment that samples $\Psi(x,t)$ by detecting fluorescence exclusively form the zero-order $\psi_0^{(0)}$ character in $\Psi(x,t)$. This would be obtained from

$$P_0(t) = \int \Psi(x,t) \psi_0^{(0)} dx$$

 $P_0(t)$ will be modulated at several frequencies.

(i) What is the value of $P_0(0)$?

(ii) The contribution of the zero-order $\psi_0^{(0)}$ state to the observed fluorescence will be modulated at some easily predicted frequencies. What are these frequencies?

III. Inter-Mode Anharmonicity in a Triatomic (10 POINTS) Molecule

Consider a nonlinear triatomic molecule. There are three vibrational normal modes, as specific in $\mathbf{H}^{(0)}$ and two anharmonic inter-mode interaction terms, as specified in $\mathbf{H}^{(1)}$.

$$\frac{\mathbf{H}^{(0)}}{hc} = \tilde{\omega}_1 (\mathbf{N}_1 + 1/2) + \tilde{\omega}_2 (\mathbf{N}_2 + 1/2) + \tilde{\omega}_3 (\mathbf{N}_3 + 1/2)$$
$$\mathbf{H}^{(1)} = k_{122} Q_1 Q_2^2 + k_{2233} Q_2^2 Q_3^2$$

A. (2 points) List *all* of the $(\Delta v_1, \Delta v_2, \Delta v_3)$ *combined* selection rules for nonzero matrix elements of the k_{122} term in **H**⁽¹⁾? One of these selection rules is (+1, +2, 0).

B. (2 points) List *all* of the $(\Delta v_1, \Delta v_2, \Delta v_3)$ selection rules for nonzero matrix elements of the k_{2233} term in **H**⁽¹⁾?

C. (2 points) In the table below, in the last column, place an X next to the intermode vibrational anharmonicity term to which the k_{2233} term contributes .

(i)	$\widetilde{\omega_e x_{e_{12}}} (v_1 + 1/2) (v_2 + 1/2)$	
(ii)	$\widetilde{\omega_e x_{e_{23}}}(v_2 + 1/2)(v_3 + 1/2)$	
(iii)	$\widetilde{\omega_e z_{e_{2233}}} (v_2 + 1/2)^2 (v_3 + 1/2)^2$	

D. (2 points) Does the term you specified in part **C** depend on the sign of k_{2233} ?

E. (2 points) Does the k_{122} term in **H**⁽¹⁾ give rise to any vibrational anharmonicity terms that are sensitive to the sign of k_{122} ? Justify your answer.

IV. Your First Encounter with a Non-Rigid (19 POINTS) Rotor

Your goal in this problem is to compute the *v*-dependence of the rotational constant of a harmonic oscillator.

Some equations that you will need:

$$B(R) = \frac{\hbar^2}{4\pi c\mu} R^{-2} , \qquad B_e = \frac{\hbar^2}{4\pi c\mu} R_e^{-2}$$
$$\hat{\mathbf{Q}} = R - R_e = \left[\frac{\hbar}{4\pi c\mu \omega_e}\right]^{1/2} (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})$$
$$\frac{1}{R^2} = \frac{1}{\left(\mathbf{Q} + R_e\right)^2} = \frac{1}{R_e^2} \left(\frac{\mathbf{Q}}{R_e} + 1\right)^{-2}$$

Power series expansion:

$$\frac{1}{R^2} = \frac{1}{R_e^2} \left[1 - 2\left(\frac{\mathbf{Q}}{R_e}\right) + 3\left(\frac{\mathbf{Q}}{R_e}\right)^2 - 4\left(\frac{\mathbf{Q}}{R_e}\right)^3 + \dots \right],$$

thus

$$B(R) = B_e \left[1 - 2\left(\frac{\mathbf{Q}}{R_e}\right) + 3\left(\frac{\mathbf{Q}}{R_e}\right)^2 - \dots \right].$$

Some algebra yields

$$\frac{\mathbf{Q}}{R_e} = \left(\frac{B_e}{\omega_e}\right)^{1/2} \left(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger}\right)$$
(1)

where $\left(\frac{B_e}{\omega_e}\right) \approx 10^{-3}$, an excellent order-sorting parameter.

$$\hat{\mathbf{H}}^{\text{ROT}} = hcB_e J(J+1) \left[1 - 2\left(\frac{B_e}{\omega_e}\right)^{1/2} \left(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger}\right) + 3\left(\frac{B_e}{\omega_e}\right) \left(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger}\right)^2 - \dots \right]$$
(2)

- **A.** (4 points) From boxed equation (2), what is $\hat{\mathbf{H}}^{(0)}$?
- **B**. (4 points) What is $\hat{\mathbf{H}}^{(1)}$?
- **C.** (6 points) $E_J = E_J^{(0)} + E_J^{(1)} + E_J^{(2)}$.

What is $E_J^{(0)}$, as a function of hc, B_e , and J(J + 1)?

What is $E_J^{(1)}$, as a function of hc, B_e , ω_e , (v + 1/2), and J(J + 1)? [HINT: $(\mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}\mathbf{a}^{\dagger}) = (2\mathbf{N} + 1)$.] **D**. (5 points) From experiment we measure

$$\begin{split} E_{J,v} &= E_J^{(0)} + E_{J,v}^{(1)} = hcB_v J(J+1) \\ B_v &= B_e - \alpha_e (v+1/2), \qquad B_{v+1} - B_v = -\alpha_e. \end{split}$$

What is α_e expressed in terms of hc, B_e , and ω_e ?

E. (2 points *extra credit*) Does the sign you have determined by α_e bother you? Why?

5.61 Exam II

V. Derivation of One Part of the Angular (10 POINTS) Momentum Commutation Rule

$$\vec{\mathbf{L}} = \vec{\mathbf{r}} x \vec{\mathbf{p}} = \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ p_x & p_y & p_z \end{pmatrix} = \hat{i} \left(y p_z - z p_y \right) - \hat{j} \left(x p_z - z p_x \right) + \hat{k} \left(x p_y - y p_x \right)$$
(1)

$$\begin{bmatrix} \mathbf{x}, \mathbf{p}_x \end{bmatrix} = i\hbar \tag{2}$$

$$\left[\mathbf{L}_{x},\mathbf{L}_{y}\right] = +\mathbf{i}\hbar\mathbf{L}_{z}$$
(3)

Use equations (1) and (2) to derive equation (3).

Some Possibly Useful Constants and Formulas

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} \qquad \hbar = 1.054 \times 10^{-34} \text{ J} \cdot \text{s}$$

$$\varepsilon_{0} = 8.854 \times 10^{-12} Cs^{2} kg^{-1} m^{-3}$$

$$c = 3.00 \times 10^{8} \text{ m/s} \qquad c = \lambda v \qquad \lambda = h/p$$

$$m_{e} = 9.11 \times 10^{-31} \text{ kg} \qquad m_{H} = 1.67 \times 10^{-27} \text{ kg}$$

$$1 \text{ eV} = 1.602 \text{ x} 10^{-19} \text{ J} \qquad e = 1.602 \text{ x} 10^{-19} \text{ C}$$

$$E = hv \qquad a_{0} = 5.29 \text{ x} 10^{-11} \text{ m} \qquad e^{\pm i\theta} = \cos\theta \pm i \sin\theta$$

$$\overline{v} = \frac{1}{\lambda} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right) \qquad \text{where } R_{H} = \frac{me^{4}}{8\varepsilon_{0}^{2}h^{3}c} = 109,678 \text{ cm}^{-1}$$

Free particle:

$$E = \frac{\hbar^2 k^2}{2m} \qquad \qquad \psi(x) = A\cos(kx) + B\sin(kx)$$

Particle in a box:

$$E_n = \frac{h^2}{8ma^2} n^2 = E_1 n^2 \qquad \psi \left(0 \le x \le a \right) = \left(\frac{2}{a} \right)^{1/2} \sin \left(\frac{n\pi x}{a} \right) \qquad n = 1, 2, \dots$$

Harmonic oscillator:

$$E_{n} = \left(n + \frac{1}{2}\right)\hbar\omega \qquad \text{[units of } \omega \text{ are radians/s]}$$

$$\psi_{0}\left(x\right) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^{2}/2}, \qquad \psi_{1}\left(x\right) = \frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1/4} \left(2\alpha^{1/2}x\right)e^{-\alpha x^{2}/2} \qquad \psi_{2}\left(x\right) = \frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1/4} \left(4\alpha x^{2} - 2\right)e^{-\alpha x^{2}/2}$$

$$\hat{x} = \sqrt{\frac{m\omega}{\hbar}}\hat{x} \qquad \qquad \hat{p} = \sqrt{\frac{1}{\hbar m\omega}}\hat{p} \quad \text{[units of } \omega \text{ are radians/s]}$$

$$\mathbf{a} = \frac{1}{\sqrt{2}}\left(\hat{x} + i\hat{p}\right) \qquad \qquad \frac{\hat{H}}{\hbar\omega} = \mathbf{a}\mathbf{a}^{\dagger} - \frac{1}{2} = \mathbf{a}^{\dagger}\mathbf{a} + \frac{1}{2} \qquad \hat{\mathbf{N}} = \mathbf{a}^{\dagger}\mathbf{a}$$

$$\mathbf{a}^{\dagger} = \frac{1}{\sqrt{2}}\left(\hat{x} - i\hat{p}\right)$$

$$2\pi c\tilde{\omega} = \omega \qquad \text{[units of } \tilde{\omega} \text{ are cm}^{-1}\text{]}$$

Semi-Classical

 $\lambda = h/p$

 $p_{\text{classical}}(x) = [2m(E - V(x))]^{1/2}$

period: $\tau = 1/v = 2\pi/\omega$

For a *thin* barrier of width ε where ε is very small, located at x_0 , and height $V(x_0)$:

$$H_{nn}^{(1)} = \int_{x_0 - \varepsilon/2}^{x_0 + \varepsilon/2} \psi_n^{(0)*} V(x) \psi_n^{(0)} dx = \varepsilon V(x_0) |\psi_n^{(0)}(x_0)|^2$$

Perturbation Theory

$$E_{n} = E_{n}^{(0)} + E_{n}^{(1)} + E_{n}^{(2)}$$

$$\Psi_{n} = \Psi_{n}^{(0)} + \Psi_{n}^{(1)}$$

$$E_{n}^{(1)} = \int \Psi_{n}^{(0)*} \widehat{H}^{(1)} \Psi_{n}^{(0)} dx = H_{nn}^{(1)}$$

$$\Psi_{n}^{(1)} = \sum_{m \neq n} \frac{H_{nm}^{(1)}}{E_{n}^{(0)} - E_{m}^{(0)}} \Psi_{m}^{(0)}$$

$$E_{n}^{(2)} = \sum_{m \neq n} \frac{\left|H_{nm}^{(1)}\right|^{2}}{E_{n}^{(0)} - E_{m}^{(0)}}$$

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.