MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017
Professor Robert W. Field

FIFTY MINUTE EXAMINATION II

Thursday, October 26

Question	Possible Score	Extra Credit	My Score
I			
$\mathbf{I I}$	41		
$\mathbf{I I}$	10		
$\mathbf{I V}$	19	2	
\mathbf{V}	10		
Total	100	2	

Name:

I. \mathbf{a}^{\dagger} and a Matrices

A. (3 points) $\quad\langle v+1| \mathbf{a}^{\dagger}|v\rangle=(v+1)^{1 / 2}$. Sketch the structure of the \mathbf{a}^{\dagger} matrix below:

B. (3 points) Now sketch the a matrix on a similar diagram.

C. (5 points) Now apply \mathbf{a}^{\dagger} to the column vector that corresponds to $|v=3\rangle$.

$$
|v=3\rangle=\left(\quad \mathbf{a}^{\dagger}|v=3\rangle=()\right.
$$

D. (3 points) Is a ${ }^{\dagger}$ Hermitian?
E. (3 points) Is $\left(\mathbf{a}^{\dagger}+\mathbf{a}\right)$ Hermitian? If it is, demonstrate it by the relationship between matrix elements that is the definition of a Hermitian operator.
F. (3 points) Is $i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)$ Hermitian? If it is, use a matrix element relationship similar to what you used for part \mathbf{E}.
(Blank page for Calculations)

II. The Road to Quantum Beats

Consider the 3-level \mathbf{H} matrix

$$
\mathbf{H}=\hbar \omega\left(\begin{array}{ccc}
10 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -10
\end{array}\right)
$$

Label the eigen-energies and eigen-functions according to the dominant basis state character. The $\widetilde{10}$ state is the one dominated by the zero-order state with $E^{(0)}=10, \tilde{0}$ by $E^{(0)}=0$, and $-\widetilde{10}$ by $E^{(0)}=-10$.
A. (6 points) Use non-degenerate perturbation theory to derive the energies
[HINT: $\mathbf{H}^{(0)}$ is diagonal, $\mathbf{H}^{(1)}$ is non-diagonal]:
(i) $\quad E_{\widetilde{10}}=$
(ii) $E_{\tilde{0}}=$
(iii) $E_{-\widetilde{10}}=$
B. (6 points) Use non-degenerate perturbation theory to derive the eigenfunctions [HINT: do not normalize]
(i) $\quad \psi_{\widetilde{10}}=$
(ii) $\psi_{\tilde{0}}=$
(iii) $\psi_{-\widetilde{10}}=$
C. (5 points) Demonstrate the approximate relationship: $\int \psi_{-\widetilde{10}} \mathbf{H} \psi_{-\widetilde{10}} d x \approx E_{-\widetilde{10}}$ [HINT: normalize by dividing by $\int \psi_{-\widetilde{10}}^{*} \psi_{-\widetilde{10}} d x$.]
D. (4 points) Use the results from part \mathbf{B} to write the elements of the \mathbf{T}^{\dagger} matrix that non-degenerate perturbation theory promises will give a nearly diagonal $\tilde{\mathbf{H}}=\mathbf{T}^{\dagger} \mathbf{H T}$
matrix [do not normalize, and do not compute $\mathbf{T}^{\mathbf{H}} \mathbf{H T}$].
E. (6 points) Suppose, at $t=0$, you prepare a state $\Psi(x, 0)=\psi_{0}^{(0)}(x)$. Use the correct elements of the \mathbf{T}^{\dagger} matrix to write $\Psi(x, 0)$ as a linear combination of the eigenstates, $\psi_{\widetilde{10}}, \psi_{\tilde{0}}$, and $\psi_{-\widetilde{10}}$ [HINT: the columns of \mathbf{T} are the rows of \mathbf{T}^{\dagger}.]:
F. (4 points) For the $\Psi(x, 0)=c_{\widetilde{10}} \psi_{\widetilde{10}}+c_{\tilde{0}} \psi_{\widetilde{0}}+c_{-\widetilde{10}} \psi_{-\widetilde{10}}$ initial state you derived in part \mathbf{E}, write $\Psi(x, t)$ (do not normalize). If you do not believe your derived $c_{\widetilde{10}}, c_{\widetilde{0}}$, and $c_{-\widetilde{10}}$ constants, leave them as symbols.
G. (10 points) Suppose you do an experiment that samples $\Psi(x, t)$ by detecting fluorescence exclusively form the zero-order $\psi_{0}^{(0)}$ character in $\Psi(x, t)$. This would be obtained from

$$
P_{0}(t)=\left|\int \Psi(x, t) \psi_{0}^{(0)} d x\right|^{2}
$$

$P_{0}(t)$ will be modulated at several frequencies.
(i) What is the value of $P_{0}(0)$?
(ii) The contribution of the zero-order $\psi_{0}^{(0)}$ state to the observed fluorescence will be modulated at some easily predicted frequencies. What are these frequencies?
(Blank page for Calculations)

III. Inter-Mode Anharmonicity in a Triatomic Molecule

Consider a nonlinear triatomic molecule. There are three vibrational normal modes, as specific in $\mathbf{H}^{(0)}$ and two anharmonic inter-mode interaction terms, as specified in $\mathbf{H}^{(1)}$.

$$
\begin{aligned}
\frac{\mathbf{H}^{(0)}}{h c} & =\tilde{\omega}_{1}\left(\mathbf{N}_{1}+1 / 2\right)+\tilde{\omega}_{2}\left(\mathbf{N}_{2}+1 / 2\right)+\tilde{\omega}_{3}\left(\mathbf{N}_{3}+1 / 2\right) \\
\mathbf{H}^{(1)} & =k_{122} Q_{1} Q_{2}^{2}+k_{2233} Q_{2}^{2} Q_{3}^{2}
\end{aligned}
$$

A. (2 points) List all of the $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)$ combined selection rules for nonzero matrix elements of the k_{122} term in $\mathbf{H}^{(1)}$? One of these selection rules is $(+1,+2,0)$.
B. (2 points) List all of the $\left(\Delta v_{1}, \Delta v_{2}, \Delta v_{3}\right)$ selection rules for nonzero matrix elements of the k_{2233} term in $\mathbf{H}^{(1)}$?
C. (2 points) In the table below, in the last column, place an X next to the intermode vibrational anharmonicity term to which the k_{2233} term contributes .

(i)	$\widetilde{\omega_{e} x_{e_{12}}}\left(v_{1}+1 / 2\right)\left(v_{2}+1 / 2\right)$	
(ii)	$\widetilde{\omega_{e} x_{e_{23}}}\left(v_{2}+1 / 2\right)\left(v_{3}+1 / 2\right)$	
(iii)	$\widetilde{\omega_{e} z_{e_{223}}}\left(v_{2}+1 / 2\right)^{2}\left(v_{3}+1 / 2\right)^{2}$	

D. (2 points) Does the term you specified in part \mathbf{C} depend on the sign of k_{2233} ?
E. (2 points) Does the k_{122} term in $\mathbf{H}^{(1)}$ give rise to any vibrational anharmonicity terms that are sensitive to the sign of k_{122} ? Justify your answer.
(Blank page for Calculations)

IV. Your First Encounter with a Non-Rigid Rotor

Your goal in this problem is to compute the v-dependence of the rotational constant of a harmonic oscillator.

Some equations that you will need:

$$
\begin{aligned}
& B(R)=\frac{\hbar^{2}}{4 \pi c \mu} R^{-2}, \quad B_{e}=\frac{\hbar^{2}}{4 \pi c \mu} R_{e}^{-2} \\
& \hat{\mathbf{Q}} \equiv R-R_{e}=\left[\frac{\hbar}{4 \pi c \mu \omega_{e}}\right]^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \\
& \frac{1}{R^{2}}=\frac{1}{\left(\mathbf{Q}+R_{e}\right)^{2}}=\frac{1}{R_{e}^{2}}\left(\frac{\mathbf{Q}}{R_{e}}+1\right)^{-2}
\end{aligned}
$$

Power series expansion:

$$
\frac{1}{R^{2}}=\frac{1}{R_{e}^{2}}\left[1-2\left(\frac{\mathbf{Q}}{R_{e}}\right)+3\left(\frac{\mathbf{Q}}{R_{e}}\right)^{2}-4\left(\frac{\mathbf{Q}}{R_{e}}\right)^{3}+\ldots\right],
$$

thus

$$
B(R)=B_{e}\left[1-2\left(\frac{\mathbf{Q}}{R_{e}}\right)+3\left(\frac{\mathbf{Q}}{R_{e}}\right)^{2}-\ldots\right] .
$$

Some algebra yields

$$
\begin{equation*}
\frac{\mathbf{Q}}{R_{e}}=\left(\frac{B_{e}}{\omega_{e}}\right)^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right) \tag{1}
\end{equation*}
$$

where $\left(\frac{B_{e}}{\omega_{e}}\right) \approx 10^{-3}$, an excellent order-sorting parameter.

$$
\begin{equation*}
\hat{\mathbf{H}}^{\mathrm{ROT}}=h c B_{e} J(J+1)\left[1-2\left(\frac{B_{e}}{\omega_{e}}\right)^{1 / 2}\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)+3\left(\frac{B_{e}}{\omega_{e}}\right)\left(\hat{\mathbf{a}}+\hat{\mathbf{a}}^{\dagger}\right)^{2}-\ldots\right] \tag{2}
\end{equation*}
$$

A. (4 points) From boxed equation (2), what is $\hat{\mathbf{H}}^{(0)}$?
B. (4 points) What is $\hat{\mathbf{H}}^{(1)}$?
C. (6 points) $E_{J}=E_{J}^{(0)}+E_{J}^{(1)}+E_{J}^{(2)}$.

What is $E_{J}^{(0)}$, as a function of $h c, B_{e}$, and $J(J+1)$?

What is $E_{J}^{(1)}$, as a function of $h c, B_{e}, \omega_{e},(v+1 / 2)$, and $J(J+1)$? $\left[\right.$ HINT: $\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}\right)=(2 \mathbf{N}+1)$.]
D. (5 points) From experiment we measure

$$
\begin{aligned}
& E_{J, v}=E_{J}^{(0)}+E_{J, v}^{(1)}=h c B_{v} J(J+1) \\
& B_{v}=B_{e}-\alpha_{e}(v+1 / 2), \quad B_{v+1}-B_{v}=-\alpha_{e} .
\end{aligned}
$$

What is α_{e} expressed in terms of $h c, B_{e}$, and ω_{e} ?
E. (2 points extra credit) Does the sign you have determined by α_{e} bother you? Why?
(Blank page for Calculations)

V. Derivation of One Part of the Angular (10 POINTS) Momentum Commutation Rule

$\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overline{\mathbf{p}}=\left(\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ p_{x} & p_{y} & p_{z}\end{array}\right)=\hat{i}\left(y p_{z}-z p_{y}\right)-\hat{j}\left(x p_{z}-z p_{x}\right)+\hat{k}\left(x p_{y}-y p_{x}\right)$
$\left[\mathbf{x}, \mathbf{p}_{x}\right]=i \hbar$
$\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right]=+\mathbf{i} \hbar \mathbf{L}_{z}$

Use equations (1) and (2) to derive equation (3).
(Blank page for Calculations)

Some Possibly Useful Constants and Formulas

$$
\begin{array}{ll}
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \hbar=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Cs}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & c=\lambda v \\
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} & m_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & e=1.602 \times 10^{-19} \mathrm{C} \\
E=h v & a_{0}=5.29 \times 10^{-11} \mathrm{~m} \quad \lambda=h / p \\
\bar{v}=\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) & \text { where } R_{H}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}=109,678 \mathrm{~cm}^{-1}
\end{array}
$$

Free particle:

$E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

Particle in a box:

$$
E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2}=E_{1} n^{2} \quad \psi(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2, \ldots
$$

Harmonic oscillator:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad[$ units of ω are radians $/ s]$
$\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \quad \psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2}$
$\hat{\tilde{x}} \equiv \sqrt{\frac{m \omega}{\hbar}} \hat{x}$
$\hat{\tilde{p}} \equiv \sqrt{\frac{1}{\hbar m \omega}} \hat{p} \quad$ [units of ω are radians $/ s$]
$\mathbf{a} \equiv \frac{1}{\sqrt{2}}(\hat{\tilde{x}}+i \hat{\tilde{p}})$
$\frac{\hat{H}}{\hbar \omega}=\mathbf{a a}^{\dagger}-\frac{1}{2}=\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2} \quad \hat{\mathbf{N}}=\mathbf{a}^{\dagger} \mathbf{a}$
$\mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{\tilde{x}}-i \hat{\tilde{p}})$
$2 \pi c \tilde{\omega}=\omega \quad\left[\right.$ units of $\tilde{\omega}$ are $\left.\mathrm{cm}^{-1}\right]$

Semi-Classical

$\lambda=h / p$
$p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
period: $\tau=1 / \nu=2 \pi / \omega$

For a thin barrier of width ε where ε is very small, located at x_{0}, and height $V\left(x_{0}\right)$:

$$
H_{n n}^{(1)}=\int_{x_{0}-\varepsilon / 2}^{x_{0}+\varepsilon / 2} \psi_{n}^{(0)^{*}} V(x) \psi_{n}^{(0)} d x=\varepsilon V\left(x_{0}\right)\left|\psi_{n}^{(0)}\left(x_{0}\right)\right|^{2}
$$

Perturbation Theory

$E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}$
$\psi_{n}=\psi_{n}^{(0)}+\psi_{n}^{(1)}$
$E_{n}^{(1)}=\int \psi_{n}^{(0)^{*}} \widehat{H}^{(1)} \psi_{n}^{(0)} d x=H_{n n}^{(1)}$
$\psi_{n}^{(1)}=\sum_{m \neq n} \frac{H_{n m}^{(1)}}{E_{n}^{(0)}-E_{m}^{(0)}} \psi_{m}^{(0)}$
$E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{n m}^{(1)}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

