MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017
Professor Robert W. Field

FIFTY MINUTE EXAMINATION I ANSWERS

Thursday, October 5

I. Tunneling and Pictures

(25 POINTS)

$\mathrm{V}(x)=\infty$
$|x|>\mathrm{a} / 2$
$\mathrm{V}(x)=0$
$a / 4 \leq|x| \leq a / 2$
$V(x)=V_{0}=\left[\frac{h^{2}}{8 m a^{2}}\right] 9$
$|x|<a / 4$

Regions I and V
Regions II and IV

Region III

The energy of the lowest level, $E_{\mathrm{n}} n=1$ is near $E_{1}^{(0)}=\left[\frac{h^{2}}{8 m a^{2}}\right]$ and the second level, E_{n} $n=2$, is near $E_{2}^{(0)}=\left[\frac{h^{2}}{8 m a^{2}}\right] 4$.
A. (8 points) Sketch $\psi_{1}(x)$ and $\psi_{2}(x)$ on the figure above. In addition, specify below the qualitatively most important features that your sketch
of $\psi_{1}(x)$ and $\psi_{2}(x)$ must display inside Region III and at the borders of Region III.
B. (3 points) What do you know about $\psi_{1}(0)$ and $\left.\frac{d \psi_{1}}{d x}\right|_{x=0}$ without solving for E_{1} and ψ_{1} ?
(i) Is $\psi_{1}(0)=0$?

No. ψ_{1} cannot have a node and still be the lowest energy state.
(ii) Does $\psi_{1}(0)$ have the same sign as $\psi_{1}(a / 2)$?

Yes.
(iii) Is $\left.\frac{d \psi_{1}}{d x}\right|_{x=0}=0$?

Yes, because ψ_{1} is a symmetric function.
C. (3 points) What do you know about $\psi_{2}(0)$ and $\left.\frac{d \psi_{2}}{d x}\right|_{x=0}$ without solving for E_{2} and ψ_{2} ?
(i) Is $\psi_{2}(0)=0$?

Yes. ψ_{2} must be antisymmetric and have a node at $x=0$.
(ii) Is $\left.\frac{d \psi_{2}}{d x}\right|_{x=0}=0$?

No.
D. (3 points) In the table below, in the last column, place an X next to the mathematical form of $\psi_{1}(x)$ in Region III .

(i)	$e^{\mathrm{k} x_{1}}$	
(ii)	$e^{-\mathrm{k} x_{1}}$	
(iii)	$\sin k x$ or $\cos k x$	
(iv)	$\mathrm{e}^{i k x}+\mathrm{e}^{-i k x}$	
(v)	$\mathrm{e}^{i k x}-\mathrm{e}^{-i k x}$	
(vi)	something else	\mathbf{X}

E. (3 points) Does the exact E_{1} level lie above or below $E_{1}^{(0)}$?

Yes. $\psi_{1}(x)$ feels the barrier strongly, which results in an increase in energy so that $E_{1} \gg E_{1}^{(0)}$.
F. (5 points) For the exact E_{2} level, is the energy difference, $\left|E_{2}-E_{2}^{(0)}\right|$, larger or smaller than $\left|E_{1}-E_{1}^{(0)}\right|$? Explain why.
The E_{2} level hardly feels the barrier. It is shifted only slightly to higher energy than $E_{2}^{(0)}$.

$$
\left|E_{2}-E_{2}^{(0)}\right| \ll\left|E_{1}-E_{1}^{(0)}\right|
$$

II. Measurement Theory

(10 POINTS)
Consider the Particle in an Infinite Box "superposition state" wavefunction,

$$
\psi_{1,2}=(1 / 3)^{1 / 2} \psi_{1}+(2 / 3)^{1 / 2} \psi_{2}
$$

where E_{1} is the eigen-energy of ψ_{1} and E_{2} is the eigen-energy of ψ_{2}.
A. (5 points) Suppose you do one experiment to measure the energy of $\psi_{1,2}$

Circle the possible result(s) of your measurement:

(i) | | E_{1} | These are the eigenvalues of ψ_{1} and ψ_{2} |
| :--- | :--- | :--- |
| | E_{2} | |

(iii) $(1 / 3) \mathrm{E}_{1}+(2 / 3) \mathrm{E}_{2}$
(iv) something else.
B. (5 points) Suppose you do 100 identical measurements to measure the energies of identical systems in state $\psi_{1,2}$ What will you observe?

$$
\begin{aligned}
\langle E\rangle & =\frac{1}{3} E_{1}+\frac{2}{3} E_{2} \\
& =\left[\frac{h^{2}}{8 m a^{2}}\right]\left[\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 4\right] \\
& =\left[\frac{h^{2}}{8 m a^{2}}\right]\left[\frac{1}{3}+\frac{8}{3}\right] \\
& =\left[\frac{h^{2}}{8 m a^{2}}\right][3]
\end{aligned}
$$

This value of $\langle E\rangle$ is between E_{1} and E_{2} and is the weighted average energy.

III. Semiclassical Quantization

(10 POINTS)
Consider the two potential energy functions:

$$
\begin{array}{ll}
\mathrm{V}_{1} & |\mathrm{x}| \leq a / 2, \mathrm{~V}_{1}(x)=-\left|\mathrm{V}_{0}\right| \\
& |\mathrm{x}|>a / 2, \mathrm{~V}_{1}(x)=0 \\
& \\
\mathrm{~V}_{2} & |\mathrm{x}| \leq a / 4, \mathrm{~V}_{2}(x)=-2\left|\mathrm{~V}_{0}\right| \\
& |\mathrm{x}|>a / 4, \mathrm{~V}_{2}(x)=0
\end{array}
$$

A. (5 points) The semi-classical quantization equation below

$$
\begin{aligned}
& \left(\frac{2}{h}\right) \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x) d x=n \\
& p_{E}=[2 m(E-V(x))]^{1 / 2}
\end{aligned}
$$

describes the number of levels below E. Use this to compute the number of levels with energy less than 0 for V_{1} and V_{2}.

$$
\begin{aligned}
& p_{E}=\left[2 m\left|V_{0}\right|\right]^{1 / 2} \\
& \text { For } V_{1} \\
& n=\left(\frac{2}{h}\right) \int_{-a / 2}^{a / 2}\left[2 m\left|V_{0}\right|\right]^{1 / 2} d x=\frac{\left[2 m\left|V_{0}\right|\right]^{1 / 2} a}{h} \\
& p_{E}=\left[2 m 2\left|V_{0}\right|\right]^{1 / 2}
\end{aligned}
$$

For V_{2}

$$
n=\left(\frac{2}{h}\right) \int_{-a / 4}^{a / 4}\left[2 m 2\left|V_{0}\right|\right]^{1 / 2} d x=\frac{\left[4 m\left|V_{0}\right|\right]^{1 / 2} a / 2}{h}
$$

B. (5 points) $\quad V_{1}$ and V_{2} have the same product of width times depth, V_{1} is (a) $\left|\mathrm{V}_{0}\right|$ and V_{2} is $(\mathrm{a} / 2)\left(2 \mid \mathrm{V}_{0} \mathrm{I}\right)$, but V_{1} and V_{2} have different numbers of bound levels. Which has the larger fractional effect, increasing the depth of the potential by $\mathrm{X} \%$ or increasing the width of the potential by X\%?

$$
n\left(V_{1}\right)=2^{1 / 2} n\left(V_{2}\right)
$$

V_{1}, the wider well, has more levels than V_{2}, the deeper well. Width has larger fractional effect than depth.

IV. Creation/Annihilation Operators

(20 POINTS)
A. (2 points) Consider the integral

$$
\int_{-\infty}^{\infty} \psi(x)_{v}^{*} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} \hat{a} \psi(x)_{v^{\prime}} d x .
$$

For what values of $v-v^{\prime}$ will the integral be non-zero (these are called selection rules)?
There are four $\hat{\mathbf{a}}^{\dagger}$ and three $\hat{\mathbf{a}}$, therefore $v=v^{\prime}+1$. The integral is non-zero when $v-v^{\prime}=+1$.
B. (4 points) Let $v^{\prime}=4$ and v be the value determined in part \mathbf{A} to give a non-zero integral. Calculate the value of the above integral (DO NOT SIMPLIFY!).
Starting from right-most factor in the operator, with $\psi_{v=4}$ we have $[(5)(4)(3)(2)(2)(3)(4)]^{1 / 2}$

last first
C. (4 points) Now consider the integral

$$
\int_{-\infty}^{\infty} \psi(x)_{v}^{*} \widehat{a^{\dagger}} \widehat{a} \widehat{a^{\dagger}} \widehat{a} \widehat{a}^{\dagger} \widehat{a} \widehat{a^{\dagger}} \psi(x)_{v^{\prime}} d x
$$

Are the selection rules for $v^{\prime}-v$ the same as in part \mathbf{A} ? Is the value of the non-zero integral for $v^{\prime}=4$ the same as in part \mathbf{B} ? If not, calculate the value of the integral (UNSIMPLIFIED!).
The $v-v^{\prime}$ selection rule is the same for Part \mathbf{A} but the numerical value of the integral is different. Starting from the right, we have

which is larger than the value in Part B.
D. (10 points) Derive the commutation rule $[\hat{N}, \hat{a}]$ starting from the definition of \hat{N}.

$$
\begin{aligned}
& \hat{N}=\hat{\mathbf{a}}^{\dagger} \mathbf{a} \\
& {\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right]=+1} \\
& {[\hat{N}, \hat{\mathbf{a}}]=\hat{N} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{N}=\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}{ }_{\mathbf{a}}-\hat{\mathbf{a}} \hat{a}^{\dagger} \hat{\mathbf{a}}} \\
& =\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} \hat{\mathbf{a}}-\left(\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right]+\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}\right) \hat{\mathbf{a}} \\
& =-\left[\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}\right] \hat{\mathbf{a}}=-\hat{\mathbf{a}} \\
& {[\hat{N}, \hat{\mathbf{a}}]=-\hat{\mathbf{a}}} \\
& \text { OR } \\
& {[\hat{N}, \hat{\mathbf{a}}]=\hat{N} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{N}=\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}\right] \hat{\mathbf{a}}+\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}} \\
& =\left[\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}\right] \hat{\mathbf{a}}=\hat{\mathbf{a}} \\
& {[\hat{N}, \hat{\mathbf{a}}]=-\hat{\mathbf{a}}}
\end{aligned}
$$

V. $\langle x\rangle,\langle p\rangle, \sigma_{x}, \sigma_{p}$ and Time Evolution of a Superposition State

(35 POINTS)

$$
\begin{aligned}
& \hat{x}=\left[\frac{\hbar}{2 \mu \omega}\right]^{1 / 2}\left(\widehat{a^{\dagger}}+\hat{a}\right) \\
& \hat{p}=\left[\frac{\hbar \mu \omega}{2}\right]^{1 / 2} i\left(\widehat{a^{\dagger}}-\hat{a}\right)
\end{aligned}
$$

A. (5 points) Show that $\widehat{x^{2}}=\left[\frac{\hbar}{2 \mu \omega}\right]\left(\hat{a}^{2}+\widehat{a}^{2}+2 \hat{N}+1\right)$.

$$
\left.\begin{array}{rl}
\widehat{x^{2}} & =\left[\frac{\hbar}{2 \mu \omega}\right]\left(\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}+\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}+\widehat{\mathbf{a}^{\dagger}} \hat{\mathbf{a}}\right.
\end{array}\right)
$$

B. (5 points) Derive a similar expression for $\widehat{p^{2}}$. (Be sure to combine $\widehat{a^{\dagger}} \hat{a}$ and $\widehat{a} \widehat{a}^{\dagger}$ terms into an integer times \hat{N} plus another integer.

$$
\begin{aligned}
\left\langle\widehat{p}^{2}\right\rangle & =\left[\frac{\hbar \mu \omega}{2}\right](-1)\left(\widehat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{2}-\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}}-\hat{\mathbf{a}} \hat{\mathbf{a}}^{\dagger}\right) \\
\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} & =\hat{N} \\
\hat{\mathbf{a}}^{\dagger} \mathbf{a}^{\dagger} & =\hat{N}+1 \\
\widehat{p^{2}} & =-\left[\frac{\hbar \mu \omega}{2}\right]\left(\widehat{\mathbf{a}}^{2}+\hat{\mathbf{a}}^{2}-2 \hat{N}-1\right) \\
& =-\left[\frac{\hbar \mu \omega}{2}\right]\left(\widehat{\mathbf{a}}^{2}+\widehat{\mathbf{a}^{2}}\right)+\left[\frac{\hbar \mu \omega}{2}\right](2 \hat{N}+1)
\end{aligned}
$$

C. (5 points) Evaluate σ_{x} and σ_{p}. (Recall that $\left.\sigma_{x}=\left[\left\langle\widehat{x^{2}}\right\rangle-\langle\hat{x}\rangle^{2}\right]^{1 / 2}\right)$.

$$
\widehat{x^{2}}=\left[\frac{\hbar}{2 \mu \omega}\right]\left[\widehat{\mathbf{a}}^{\dagger^{2}}+\hat{\mathbf{a}}^{2}+2 \hat{N}+1\right]
$$

we want $\int \psi_{v} \hat{x}^{2} \psi_{v} d x$, selection rule is $\Delta v=0$

$$
\begin{aligned}
& \left\langle\hat{x}^{2}\right\rangle=\left[\frac{\hbar}{2 \mu \omega}\right](2 v+1) \\
& \langle\hat{x}\rangle=0 \text { because selection rule is } \Delta v= \pm 1 \\
& \sigma_{x}=\left[\frac{\hbar}{2 \mu \omega}\right]^{1 / 2}(2 v+1)^{1 / 2} \\
& \hat{p}^{2}=\left[\frac{\hbar \mu \omega}{2}\right]\left[-\widehat{\mathbf{a}}^{\dagger}-\hat{\mathbf{a}}^{2}+2 \hat{N}+1\right] \\
& \left\langle\hat{p}^{2}\right\rangle=\left[\frac{\hbar \mu \omega}{2}\right](2 v+1) \\
& \sigma_{p}=\left[\frac{\hbar \mu \omega}{2}\right]^{1 / 2}(2 v+1)^{1 / 2}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\sigma_{x} \sigma_{p} & =\left[\frac{\hbar}{2 \mu \omega}\right]^{1 / 2}\left[\frac{\hbar \mu \omega}{2}\right]^{1 / 2} 2(v+1 / 2) \\
& =\frac{\hbar}{2}\left[\frac{\mu \omega}{\mu \omega}\right]^{1 / 2} 2(v+1 / 2) \\
& =\hbar(v+1 / 2)
\end{aligned}
$$

D. (5 points) Show, using your results for $\widehat{x^{2}}$ and $\widehat{p^{2}}$, that $\hat{H}=\frac{\widehat{p^{2}}}{2 \mu}+\frac{k \widehat{x^{2}}}{2}=\hbar \omega[\hat{N}+1 / 2]$. (The contributions from \hat{a}^{2} and ${\widehat{a^{\dagger}}}^{2}$ exactly cancel.)

$$
\begin{aligned}
\frac{\widehat{p^{2}}}{2 \mu} & =\frac{\hbar \mu \omega}{4 \mu}\left[(2 v+1)-\hat{\mathbf{a}}^{+2}-\hat{\mathbf{a}}^{2}\right] \\
\frac{k \widehat{x^{2}}}{2} & =\frac{k}{2}\left[\frac{\hbar}{2 \mu \omega}\right]\left[(2 v+1)+\hat{\mathbf{a}}^{\dagger 2}+\hat{\mathbf{a}}^{2}\right] \\
\frac{\hbar \mu \omega}{4 \mu} & =\frac{\hbar \omega}{4} \\
\frac{k}{2}\left(\frac{\hbar}{2 \mu \omega}\right) & =\frac{\hbar \omega}{4} \text { because }(k / \mu)=\omega^{2} \\
\hat{H} & =\hbar \omega[\hat{N}+1 / 2]
\end{aligned}
$$

E. (5 points) For $\Psi(x, t=0)=\mathrm{c}_{0} \psi_{0}+c_{1} \psi_{1}+c_{2} \psi_{2}$, write the time-dependent wavefunction, $\Psi(x, t)$.

$$
\Psi(x, t)=c_{0} e^{-i 0.5 \omega t} \psi_{0}+c_{1} e^{-i 1.5 \omega t} \psi_{1}+c_{2} e^{-i 2.5 \omega t} \psi_{2}
$$

F. (5 points) Assume that c_{0}, c_{1}, and c_{2} are real. Evaluate $\langle\hat{x}\rangle_{t}$ and show that $\langle x\rangle_{t}$ oscillates at angular frequency ω. [HINT: $2 \cos \theta=e^{i \theta}+e^{-i \theta}$.]
We know the selection rule for \hat{x} is $\Delta v= \pm 1$.
We know the selection rule for $\widehat{x^{2}}$ is $\Delta v=0, \pm 2$.

$$
\begin{aligned}
\langle\hat{x}\rangle=\int \Psi * \hat{x} \Psi d x & =\left|c_{0}\right|^{2} 0+\left|c_{1}\right|^{2} 0+\left|c_{2}\right|^{2} 0 \\
& +c_{0} c_{1} x_{01} e^{-i \omega t}+c_{1} c_{0} x_{10} e^{i \omega t} \\
& +c_{1} c_{2} x_{12} e^{-i \omega t}+c_{2} c_{1} e^{i \omega t} \\
& +c_{0} c_{2} 0+c_{2} c_{0} 0
\end{aligned}
$$

Thus $\langle\hat{x}\rangle=2 c_{0} c_{1} x_{01} \cos \omega t+2 c_{1} c_{2} x_{12} \cos \omega t$ because $x_{01}=x_{10}$ and $x_{12}=x_{21}$ $x_{21}=2^{1 / 2} x_{10}$ could give additional simplification.
G. (5 points) Evaluate $\left\langle\widehat{x^{2}}\right\rangle_{t}$. Show that $\left\langle\widehat{x^{2}}\right\rangle_{t}$ includes a contribution that oscillates at an angular frequency of 2ω.

$$
\left\langle\widehat{x^{2}}\right\rangle=\frac{\hbar}{2 \mu \omega}[\underbrace{\hat{\mathbf{a}}^{\dagger 2}+\widehat{\mathbf{a}^{2}}}_{\substack{\text { these give } \\ \cos 2 \omega t}}+\underset{\substack{t \text { this gives a } \\ \text { term }}}{2 \hat{N}+1}]
$$

Some Possibly Useful Constants and Formulas

$$
\begin{array}{ll}
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \hbar=1.054 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Cs}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & c=\lambda v \\
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} & m_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg} \\
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J} & e=1.602 \times 10^{-19} \mathrm{C} \\
E=h v & a_{0}=5.29 \times 10^{-11} \mathrm{~m} \\
\bar{v}=\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) & \text { where } R_{H}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{3} c}=109,678 \mathrm{~cm}^{-1}
\end{array}
$$

Free particle:

$E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

Particle in a box:

$E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2}=E_{1} n^{2} \quad \psi(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2, \ldots$

Harmonic oscillator:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad[$ units of ω are radians $/ s]$
$\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \quad \psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2}$
$\hat{\tilde{x}} \equiv \sqrt{\frac{m \omega}{\hbar}} \hat{x}$
$\hat{\tilde{p}} \equiv \sqrt{\frac{1}{\hbar m \omega}} \hat{p} \quad$ [units of ω are radians/s]
$\mathbf{a} \equiv \frac{1}{\sqrt{2}}(\hat{\tilde{x}}+i \hat{\tilde{p}})$
$\frac{\hat{H}}{\hbar \omega}=\mathbf{a a}^{\dagger}-\frac{1}{2}=\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2} \quad \hat{\mathbf{N}}=\mathbf{a}^{\dagger} \mathbf{a}$
$\mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{\tilde{x}}-i \hat{\tilde{p}})$
$2 \pi c \tilde{\omega}=\omega \quad\left[\right.$ units of $\tilde{\omega}$ are $\left.\mathrm{cm}^{-1}\right]$

Semi-Classical

$\lambda=h / p$
$p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
period: $\tau=1 / \nu=2 \pi / \omega$

For a thin barrier of width ε where ε is very small, located at x_{0}, and height $V\left(x_{0}\right)$:

$$
H_{n n}^{(1)}=\int_{x_{0}-\varepsilon / 2}^{x_{0}+\varepsilon / 2} \psi_{n}^{(0)^{*}} V(x) \psi_{n}^{(0)} d x=\varepsilon V\left(x_{0}\right)\left|\psi_{n}^{(0)}\left(x_{0}\right)\right|^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

