MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.61 Physical Chemistry

Fall, 2017
Professor Robert W. Field
FIFTY MINUTE EXAMINATION I
Thursday, October 5

Question	Possible Score	My Score
I	25	
II	10	
III	10	
IV	20	
V	35	
Total	100	

\qquad

I. Tunneling and Pictures

(25 POINTS)

$\mathrm{V}(x)=\infty$	$\|x\|>\mathrm{a} / 2$	Regions I and V
$\mathrm{V}(x)=0$	$a / 4 \leq\|x\| \leq a / 2$	Regions II and IV
$V(x)=V_{0}=\left[\frac{h^{2}}{8 m a^{2}}\right] 9$	$\|x\|<a / 4$	Region III

The energy of the lowest level, $E_{\mathrm{n}} n=1$ is near $E_{1}^{(0)}=\left[\frac{h^{2}}{8 m a^{2}}\right]$ and the second level, E_{n} $n=2$, is near $E_{2}^{(0)}=\left[\frac{h^{2}}{8 m a^{2}}\right] 4$.
A. (8 points) Sketch $\psi_{1}(x)$ and $\psi_{2}(x)$ on the figure above. In addition, specify below the qualitatively most important features that your sketch of $\psi_{1}(x)$ and $\psi_{2}(x)$ must display inside Region III and at the borders of Region III.
B. (3 points) What do you know about $\psi_{1}(0)$ and $\left.\frac{d \psi_{1}}{d x}\right|_{x=0}$ without solving for E_{1} and ψ_{1} ?
(i) Is $\psi_{1}(0)=0$?
(ii) Does $\psi_{1}(0)$ have the same sign as $\psi_{1}(a / 2)$?
(iii) Is $\left.\frac{d \psi_{1}}{d x}\right|_{x=0}=0$?
C. (3 points) What do you know about $\psi_{2}(0)$ and $\left.\frac{d \psi_{2}}{d x}\right|_{x=0}$ without solving for E_{2} and ψ_{2} ?
(i) Is $\psi_{2}(0)=0$?
(ii) Is $\left.\frac{d \psi_{2}}{d x}\right|_{x=0}=0$?
D. (3 points) In the table below, in the last column, place an X next to the mathematical form of $\psi_{1}(x)$ in Region III .

(i)	$e^{k\|x\|}$	
(ii)	$e^{-k x x}$	
(iii)	$\sin k x$ or $\cos k x$	
(iv)	$\mathrm{e}^{i k x}+\mathrm{e}^{-i k x}$	
(v)	$\mathrm{e}^{\mathrm{i} k x}-\mathrm{e}^{-i k x}$	
(vi)	something else	

E. (3 points) Does the exact E_{1} level lie above or below $E_{1}^{(0)}$?
F. (5 points) For the exact E_{2} level, is the energy difference, $\left|E_{2}-E_{2}^{(0)}\right|$, larger or smaller than $\left|E_{1}-E_{1}^{(0)}\right|$? Explain why.
(Blank page for Calculations)

II. Measurement Theory

(10 POINTS)
Consider the Particle in an Infinite Box "superposition state" wavefunction,

$$
\psi_{1,2}=(1 / 3)^{1 / 2} \psi_{1}+(2 / 3)^{1 / 2} \psi_{2}
$$

where E_{1} is the eigen-energy of ψ_{1} and E_{2} is the eigen-energy of ψ_{2}.
A. (5 points) Suppose you do one experiment to measure the energy of $\psi_{1,2}$ Circle the possible result(s) of your measurement:
(i) E_{1}
(ii) E_{2}
(iii) $(1 / 3) \mathrm{E}_{1}+(2 / 3) \mathrm{E}_{2}$
(iv) something else.
B. (5 points) Suppose you do 100 identical measurements to measure the energies of identical systems in state $\psi_{1,2}$ What will you observe?
(Blank page for Calculations)

III. Semiclassical Quantization

Consider the two potential energy functions:

$$
\begin{array}{ll}
\mathrm{V}_{1} & |\mathrm{x}| \leq a / 2, \mathrm{~V}_{1}(x)=-\left|\mathrm{V}_{0}\right| \\
& |\mathrm{x}|>a / 2, \mathrm{~V}_{1}(x)=0 \\
& \\
\mathrm{~V}_{2} & |\mathrm{x}| \leq a / 4, \mathrm{~V}_{2}(x)=-2\left|\mathrm{~V}_{0}\right| \\
& |\mathrm{x}|>a / 4, \mathrm{~V}_{2}(x)=0
\end{array}
$$

A. (5 points) The semi-classical quantization equation below

$$
\begin{aligned}
& \left(\frac{2}{h}\right) \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x) d x=n \\
& p_{E}=[2 m(E-V(x))]^{1 / 2}
\end{aligned}
$$

describes the number of levels below E. Use this to compute the number of levels with energy less than 0 for V_{1} and V_{2}.
B. (5 points) $\quad \mathrm{V}_{1}$ and V_{2} have the same product of width times depth, V_{1} is $(\mathrm{a})\left|\mathrm{V}_{0}\right|$ and V_{2} is $(\mathrm{a} / 2)\left(2\left|\mathrm{~V}_{0}\right|\right)$, but V_{1} and V_{2} have different numbers of bound levels. Which has the larger fractional effect, increasing the depth of the potential by $\mathrm{X} \%$ or increasing the width of the potential by X\%??
(Blank page for Calculations)

IV. Creation/Annihilation Operators

A. (2 points) Consider the integral

$$
\int_{-\infty}^{\infty} \psi(x)_{v}^{*} \widehat{a^{\dagger}} \widehat{a^{\dagger}} \hat{a^{\dagger}} \hat{a^{\dagger}} \hat{a} \hat{a} \hat{a} \psi(x)_{v^{\prime}} d x .
$$

For what values of $v-v^{\prime}$ will the integral be non-zero (these are called selection rules)?
B. (4 points) Let $v^{\prime}=4$ and v be the value determined in part \mathbf{A} to give a non-zero integral. Calculate the value of the above integral (DO NOT SIMPLIFY!).
C. (4 points) Now consider the integral

$$
\int_{-\infty}^{\infty} \psi(x)_{v}^{*} \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a} \hat{a^{\dagger}} \widehat{a}^{\dagger} \psi(x)_{v^{\prime}} d x
$$

Are the selection rules for $v^{\prime}-v$ the same as in part \mathbf{A} ? Is the value of the non-zero integral for $v^{\prime}=4$ the same as in part \mathbf{B} ? If not, calculate the value of the integral (UNSIMPLIFIED!).
D. (10 points) Derive the commutation rule $[\hat{N}, \hat{a}]$ starting from the definition of \hat{N}.
(Blank page for Calculations)

V. $\langle x\rangle,\langle p\rangle, \sigma_{x}, \sigma_{p}$ and Time Evolution of a Superposition State

$$
\begin{aligned}
& \hat{x}=\left[\frac{\hbar}{2 \mu \omega}\right]^{1 / 2}\left(\widehat{a^{\dagger}}+\hat{a}\right) \\
& \hat{p}=\left[\frac{\hbar \mu \omega}{2}\right]^{1 / 2} i\left(\widehat{a^{\dagger}}-\hat{a}\right)
\end{aligned}
$$

A. (5 points) Show that $\widehat{x^{2}}=\left[\frac{\hbar}{2 \mu \omega}\right]\left(\hat{a}^{2}+{\widehat{a^{\dagger}}}^{2}+2 \hat{N}+1\right)$.
B. (5 points) Derive a similar expression for $\widehat{p^{2}}$. (Be sure to combine $\widehat{a^{\dagger}} \hat{a}$ and $\widehat{a} \widehat{a^{\dagger}}$ terms into an integer times \hat{N} plus another integer.
C. (5 points) Evaluate σ_{x} and σ_{p}. (Recall that $\left.\sigma_{x}=\left[\left\langle\widehat{x^{2}}\right\rangle-\langle\hat{x}\rangle^{2}\right]^{1 / 2}\right)$.
D. (5 points) Show, using your results for $\widehat{x^{2}}$ and $\widehat{p^{2}}$, that
$\hat{H}=\frac{\widehat{p^{2}}}{2 \mu}+\frac{k \widehat{x}^{2}}{2}=\hbar \omega[\hat{N}+1 / 2]$. (The contributions from \hat{a}^{2} and ${\widehat{a^{\dagger}}}^{2}$ exactly cancel.)
E. (5 points) For $\Psi(x, t=0)=\mathrm{c}_{0} \psi_{0}+c_{1} \psi_{1}+c_{2} \psi_{2}$, write the time-dependent wavefunction, $\Psi(x, t)$.
F. (5 points) Assume that c_{0}, c_{1}, and c_{2} are real. Evaluate $\langle\hat{x}\rangle_{t}$ and show that $\langle x\rangle_{t}$ oscillates at angular frequency ω. [HINT: $2 \cos \theta=e^{i \theta}+e^{-i \theta}$.]
G. (5 points) Evaluate $\left\langle\widehat{x^{2}}\right\rangle_{t}$. Show that $\left\langle\widehat{x^{2}}\right\rangle_{t}$ includes a contribution that oscillates at an angular frequency of 2ω.
(Blank page for Calculations)

Some Possibly Useful Constants and Formulas

\[

\]

Free particle:

$E=\frac{\hbar^{2} k^{2}}{2 m} \quad \psi(x)=A \cos (k x)+B \sin (k x)$

Particle in a box:

$E_{n}=\frac{h^{2}}{8 m a^{2}} n^{2}=E_{1} n^{2} \quad \psi(0 \leq x \leq a)=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right) \quad n=1,2, \ldots$

Harmonic oscillator:

$E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega \quad[$ units of ω are radians $/ s]$
$\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}, \quad \psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(2 \alpha^{1 / 2} x\right) e^{-\alpha x^{2} / 2} \quad \psi_{2}(x)=\frac{1}{\sqrt{8}}\left(\frac{\alpha}{\pi}\right)^{1 / 4}\left(4 \alpha x^{2}-2\right) e^{-\alpha x^{2} / 2}$
$\hat{\tilde{x}} \equiv \sqrt{\frac{m \omega}{\hbar}} \hat{x}$
$\hat{\tilde{p}} \equiv \sqrt{\frac{1}{\hbar m \omega}} \hat{p} \quad$ [units of ω are radians $/ s$]
$\mathbf{a} \equiv \frac{1}{\sqrt{2}}(\hat{\tilde{x}}+i \hat{\tilde{p}})$
$\frac{\hat{H}}{\hbar \omega}=\mathbf{a a}^{\dagger}-\frac{1}{2}=\mathbf{a}^{\dagger} \mathbf{a}+\frac{1}{2} \quad \hat{\mathbf{N}}=\mathbf{a}^{\dagger} \mathbf{a}$
$\mathbf{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{\tilde{x}}-i \hat{\tilde{p}})$
$2 \pi c \tilde{\omega}=\omega \quad\left[\right.$ units of $\tilde{\omega}$ are $\left.\mathrm{cm}^{-1}\right]$

Semi-Classical

$\lambda=h / p$
$p_{\text {classical }}(x)=[2 m(E-V(x))]^{1 / 2}$
period: $\tau=1 / \nu=2 \pi / \omega$

For a thin barrier of width ε where ε is very small, located at x_{0}, and height $V\left(x_{0}\right)$:

$$
H_{n n}^{(1)}=\int_{x_{0}-\varepsilon / 2}^{x_{0}+\varepsilon / 2} \psi_{n}^{(0)^{*}} V(x) \psi_{n}^{(0)} d x=\varepsilon V\left(x_{0}\right)\left|\psi_{n}^{(0)}\left(x_{0}\right)\right|^{2}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

