
  
  

 

5.61 Fall 2017 
Problem Set #6 

 

Suggested Reading: McQuarrie, Chapters 8.4–8.5 

1. Harmonic Oscillator Subject to Perturbation by an Electric Field

This problem is related to the example discussed in Lecture #19 of a harmonic oscillator 
perturbed by an oscillating electric field. An electron is connected by a harmonic spring to 
a fixed point at x = 0. It is subject to a field–free potential energy 

1 
V (x) = kx2 . 

2 

The energy levels and eigenstates are those of a harmonic oscillator where 

]1/2ω = [k/me

Ev = }ω(v + 1/2) 

ψv(x) = (v!)
−1/2(â†)vψv=0(x). 

Now a constant electric field, E0, is applied and V (x) becomes 

V (x) = 
1 
kx2 + E0ex (e > 0 by definition). 
2 

Note on dipole interactions and signs: 

The interaction energy of a charge q located at position x in a uniform DC 
electric field E0 is aways 

H = −µE0 = −E0qx. 

Note the negative sign! This means that when a dipole, ~µ = q~x, points along the same 
direction as an electric field, there is a favorable interaction (i.e. negative interaction 
energy). 

For an electron, q = qe− ≡ −e, where e is the elementary charge and is strictly 
positive, making the electron’s charge negative. Therefore, an electron in a field in 
the +x direction has an interaction expressed as 

~H = −~µ · E0 = −E0qe− x = −E0(−e)x = +E0ex. 

As the electron’s position x increases, its interaction energy with the field increases 
(assuming E0 > 0, i.e. the field points in the +x direction). This makes physical 
sense: we know from 8.02 that an electron likes to go away from the direction that 
the field points (and positive charges like to go toward the direction of the field). 



You are going to approach this problem two ways: 

(i) by a simple and exact way first, and then 

(ii) by perturbation theory. 

A. Solve for xmin, V (xmin), and V (x0) where x0 = x − xmin for this harmonic oscillator in 
a constant electric field. Is the system still a harmonic oscillator? What is ω for this 
oscillator? 

B. Write an expression for the energy levels as a function of the strength of the electric 
field. 

C. One definition of the polarizability, α, is the second derivative of the energy with respect 
to the electric field 

d2Ev
αv = − . 

dE0
2 

What is the value of αv? Is it v–dependent? 

D. Another definition of the polarizability is 

µ(E0) − µ(E = 0) = αE0 

where µ is the electric dipole moment. Using this definition of α, what is µ(E0)? 

E. Now let’s approach this problem by perturbation theory. The zero-order energies and 
wavefunctions are those of the harmonic oscillator at E0 = 0. The perturbation term 
is 

H(1)b = E0ex̂

where x̂ is the usual harmonic oscillator displacement coordinate. If � �1/2}
x̂ = (â+ â†),

2µω 

write a general formula for all of the non-zero Z 
xv0,v ≡ dxψv

? 
0 x̂ψv 

integrals. 

0 HF. Using the value you found for xv write all of the E0–dependent values for b (1) 
and,v v0,v 

then compute the energy levels of the harmonic oscillator perturbed by a electric field, 
where 

= E(0) + E(1) + E(2)Ev v v v 

and the perturbed wavefunctions are 

= ψ(0) + ψ(1)ψv v v . 
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d2Ev
G. Using compute the polarizability, αv. Is the polarizability v–dependent? Does 

dE0
2 

αv agree with the value you obtained in part C? n o 
(1)

H. Using the ψv , compute µv using Z 
= e dxψ?xψvˆµv v 

where the ψv here are the perturbed ψv. Is µ v–dependent? Should it be v–dependent? 
Does it agree with the result you obtained in part D? 

2. Some Short Answer Questions 

A. Evaluate the following integrals for ψJM eigenfunctions of J2 and Jz. � �4 
(i) 

R 
ψ∗ Jb+ ψ2,−2dτ22 � �4 

(ii) 
R 
ψ∗ Jb+ ψ2,−1dτ33 � �4 

(iii) 
R 
ψ∗ Jb+ ψ3,−3dτ33 

1 p̂2 
B. Which of the following operators commutes with Hb = 

2 kx
2 + 

2µ ? 

(i) a† 

(ii) a†a 

(iii) aa† 

(iv) aaaa†a†a† bC. Is Lb+ = Lx + iLby Hermitian? 

D. Is 2−1/2[ψLML + ψLML−1] an eigenfunction of Lb+? Explain 

3. Anharmonic Oscillator 

The potential energy curves for most stretching vibrations have a form similar to a Morse 
potential (x is displacement from equilibrium, written as Q in lecture). 

−βx]2 −βx −2βx].VM (x) = D[1 − e = D[1 − 2e + e 

Expand in a power series 

VM (x) = D[β2 x 2 − β3 x 3 +
7 
β4 x 4 + . . . ]. 

12 

In contrast, most bending vibrations have an approximately quartic form 

4VQ(x) = 
1 
kx2 + ax . 
2 
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Here is some useful information: � �3/2}
x̂3 = (â+ â†)3 

2µω� �2 

x̂4 = 
} 

(â+ â†)4 

2µω 

ω = (k/µ)1/2 

(k/µ)1/2 

ω̃ = 
2πc 

(â+ ˆ†)3 = ˆ3 + 3( b a + 3 ba + âa a N + 1)ˆ Nˆ† †3 

a †)4 a 4 N − 2] + [6 b N + 6) + â†4(â+ ˆ = ˆ + â2[4 b N2 + 6 Nb + 3] + â†2(4 bb †ˆN = â a. 

The power series expansion of the vibrational energy levels is 

Ev = hc[ω̃(v + 1/2) − ω̃x̃(V + 1/2)2 + ω̃ỹ(V + 1/2)3]. 

A. For a Morse potential, use perturbation theory to obtain the relationships between 
(D, β) and (ω̃, ˜x, ˜y). Treat the (â + â†)3ω˜ ω˜ term through second-order perturbation 
theory and the (â+ â†)4 term only through first-order perturbation theory. 

[HINT: you will find that ω̃ỹ = 0.] 

B. (Optional Problem) For a quartic potential, find the relationship between (˜ ω˜ ω˜ω, ˜x, ˜y) 
and (k, b) by treating (â+ â†)4 through second-order perturbation theory. 

A Note about Phase Ambiguity 

When one uses â, â† and Nb operators to generate all Harmonic Oscillator wavefunc-
tions and calculate all integrals, it is easy to forget what the explicit functional forms 
are for all of the ψv(x). In particular, is the innermost (near x−) or outermost (near � � 
x+) lobe of the ψv always positive? Use â† = 2−1/2 xb̃− ibp̃ to show that the outer-

most lobe of all ψv(x) is always positive, given that 

ψv(x) = [v!]
−1/2(â†)vψ0(x) 

and that ψ0(x) is a positive Gaussian. Apply x̂ and k − ip̂ to the region of ψ0(x) near 
x+(E0) to discover whether the region of ψ1(x) near x+(E1) is positive or negative. 
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4. Semi–Classical Treatment of H–Atom–Like Systems 

The radial part of the H-atom Hamiltonian includes the effective potential 

1 `(` + 1) 
V`(r) = − + . 

r 2r2 

The eigenfunctions and eigenvalues of this radial problem are obtained from a 2nd order 
differential equation for χn,`(r) = rRn,`(r) � 

−}2 d2 � 

− V`(r) χn,`(r) = En,`χn,`(r). 
2µH dr2 

You are going to understand this problem using a semi-classical approximation, without 
actually solving the differential equation. 

A. For a 1-dimensional problem (OK to choose ` = 0), where n = 0 is the quantum 
number for the lowest energy level, what is the relationship between n and the number 
of internal nodes? 

B. The de Broglie relationship, λ = h/p, may be generalized to a system where p is 
dependent on r, via the classical mechanical definition of p(r) 

p(r) = [2m(En` − V`(r))]
1/2 = h/λ(r). 

Thus the semi-classical wavelength is 

λ(r) = h[2m(En,` − V`(r))]
−1/2 . 

The following integral equation enables you to compute the number of semi-classical 
wavelengths between the turning points of the V`(r) at energy En,`: Z r+(En,`)1 

(p)dr = # of wavelengths. pEn,`h r−(En,`) 

Justify this equation by reference to an infinite box of width a. 

C. If the lowest energy level has quantum number n = 0 and ψn=0(r) has zero internal 
nodes, then how many internal nodes does the ψn−4(r) function have? 

How many wavelengths fit between the turning points of V`(r) at En=4? 
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D. There is a semi-classical quantization rule (corrected for tunneling of the wavefunction 
into the classically forbidden E < V`(r) regions) Z r+(En) h 

pE (r)dr = (n + 1/2)
2r−(En) 

that tells you 

(i) The energy of the nth level (by iterating E until the quantization condition is 
satisfied); 

(ii) how many energy levels lie at or below E; 

and � 
dn �(iii) what is the density of states, 
dE E 

, or 

n(E + dE) − n(E − dE) 
. 

2dE 

Use the semi-classical quantization condition to find the energy levels of a har-
monic oscillator. (You have to evaluate a do-able integral.) 

E. What does the generalized de Broglie definition of λ(r) tell you about the locations of 
nodes for ` = 0 of the H atom? 

(i) Compute the r value of the innermost internal node in χn,`(r) for ` = 0, n = 10 
and n = 20, where 

−hc<H
E10s = , <H = 109679 cm−1 . 

102 

This will show you that the innermost nodes for all n & 6 members of any n` 
Rydberg series occur at approximately the same value of r. 

(ii) For 10s, sketch the locations of all of the internal nodes. Which nodes are closest 
together and which are the furthest apart? 
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Parts F through J are optional 

The next sequence of questions will lead you to estimate the amplitudes of the lobes of 
|ψn`(r)|2 between each pair of adjacent nodes. 

F. The classical mechanical oscillator period for each n` level may be estimated from � � 
En+1/2,` − En−1/2,`

τn,` = . 
h 

Estimate the oscillation period for the 10s state. 

G. Derive the time required for a classical electron to travel from the (n − 1)th to the 
(n + 1)th internal node with reference to the equations below: 

r of the nth node is denoted as r[n] � � h 
λ r[n] = � � 

p r[n]� � � �� 
ν r[n] = p r[n] me� � 

λ r[n]
Δt[n] = � � . 

ν r[n] 

H. The probability of finding a classical particle moving at positive velocity between the 
(n − 1)th and (n + 1)th nodes is 

Δt[n] 
. 

τn,` 

λ∗ 
n,`(r)λn,`(r) is an oscillatory function, oscillating between 0 and twice the node–to– � � � � � � �� 
node probability. Estimate ψ∗ r[n] ψn,` r[n] and �ψn,` r[n] �.n,` 

I. How would you use the results that you have derived here to estimate the expectation 
value of rk for any value of k [HINT: a sum of each node-to-node region] Z ∞� 

k ψ ∗ r = n,`r 
kψn,`dr? 

−∞ 

J. For non-hydrogenic atoms, it is possible to replace the Rydberg equation (integer-n) 
by 

hc< 
En ∗,` = − ∗2n` 

n` = n − δ` 

where δ` is the “quantum defect.” n ∗ can be determined empirically from ` 

hc< 
∗` =E∞ − En ∗2n � 

` �1/2
hc<∗ n = 

∗`E∞ − En 
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and 

2hc< 
[En ∗` − En ∗`−1] ≈ . ∗3`n 

Are these semi-classical equations sufficient to approximate the expected values of all 
properties of all Rydberg states of all atoms? 
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