5.61 Fall 2017 Problem Set #6

Suggested Reading: McQuarrie, Chapters 8.4–8.5

1. Harmonic Oscillator Subject to Perturbation by an Electric Field

This problem is related to the example discussed in Lecture #19 of a harmonic oscillator perturbed by an oscillating electric field. An electron is connected by a harmonic spring to a fixed point at x = 0. It is subject to a field-free potential energy

$$V(x) = \frac{1}{2}kx^2.$$

The energy levels and eigenstates are those of a harmonic oscillator where

$$\omega = [k/m_e]^{1/2}$$
$$E_v = \hbar\omega(v+1/2)$$
$$\psi_v(x) = (v!)^{-1/2} (\hat{\mathbf{a}}^{\dagger})^v \psi_{v=0}(x)$$

Now a constant electric field, E_0 , is applied and V(x) becomes

$$V(x) = \frac{1}{2}kx^2 + E_0ex \quad (e > 0 \text{ by definition}).$$

Note on dipole interactions and signs:

The interaction energy of a charge q located at position x in a uniform DC electric field E_0 is aways

$$H = -\mu E_0 = -E_0 qx.$$

Note the negative sign! This means that when a dipole, $\vec{\mu} = q\vec{x}$, points along the same direction as an electric field, there is a *favorable* interaction (i.e. negative interaction energy).

For an electron, $q = q_{e^-} \equiv -e$, where e is the elementary charge and is *strictly* positive, making the electron's charge negative. Therefore, an electron in a field in the +x direction has an interaction expressed as

$$H = -\vec{\mu} \cdot \vec{E_0} = -E_0 q_{e^-} x = -E_0 (-e) x = +E_0 ex.$$

As the electron's position x increases, its interaction energy with the field increases (assuming $E_0 > 0$, i.e. the field points in the +x direction). This makes physical sense: we know from 8.02 that an electron likes to go *away* from the direction that the field points (and positive charges like to go *toward* the direction of the field).

You are going to approach this problem two ways:

- (i) by a simple and exact way first, and then
- (ii) by perturbation theory.
- A. Solve for x_{\min} , $V(x_{\min})$, and V(x') where $x' = x x_{\min}$ for this harmonic oscillator in a constant electric field. Is the system still a harmonic oscillator? What is ω for this oscillator?
- **B.** Write an expression for the energy levels as a function of the strength of the electric field.
- C. One definition of the *polarizability*, α , is the second derivative of the energy with respect to the electric field

$$\alpha_v = -\frac{d^2 E_v}{dE_0^2}.$$

What is the value of α_v ? Is it *v*-dependent?

D. Another definition of the polarizability is

$$\mu(E_0) - \mu(E=0) = \alpha E_0$$

where μ is the electric dipole moment. Using this definition of α , what is $\mu(E_0)$?

E. Now let's approach this problem by perturbation theory. The zero-order energies and wavefunctions are those of the harmonic oscillator at $E_0 = 0$. The perturbation term is

$$\widehat{\mathbf{H}}^{(1)} = E_0 e \hat{x}$$

where \hat{x} is the usual harmonic oscillator displacement coordinate. If

$$\hat{x} = \left(\frac{\hbar}{2\mu\omega}\right)^{1/2} (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger}),$$

write a general formula for *all* of the non-zero

$$x_{v',v} \equiv \int dx \psi_{v'}^{\star} \hat{x} \psi_{v}$$

integrals.

F. Using the value you found for $x_{v',v}$ write all of the E_0 -dependent values for $\widehat{\mathbf{H}}_{v',v}^{(1)}$ and then compute the energy levels of the harmonic oscillator perturbed by a electric field, where

$$E_v = E_v^{(0)} + E_v^{(1)} + E_v^{(2)}$$

and the perturbed wavefunctions are

$$\psi_v = \psi_v^{(0)} + \psi_v^{(1)}$$

- **G.** Using $\frac{d^2 E_v}{dE_0^2}$ compute the polarizability, α_v . Is the polarizability *v*-dependent? Does α_v agree with the value you obtained in part **C**?
- **H.** Using the $\left\{\psi_v^{(1)}\right\}$, compute μ_v using

$$\mu_v = e \int dx \psi_v^\star \hat{x} \psi_v$$

where the ψ_v here are the perturbed ψ_v . Is μv -dependent? Should it be v-dependent? Does it agree with the result you obtained in part **D**?

2. Some Short Answer Questions

A. Evaluate the following integrals for ψ_{JM} eigenfunctions of \mathbf{J}^2 and \mathbf{J}_z .

(i)
$$\int \psi_{22}^* \left(\widehat{\mathbf{J}}^+\right)^4 \psi_{2,-2} d\tau$$

(ii) $\int \psi_{33}^* \left(\widehat{\mathbf{J}}^+\right)^4 \psi_{2,-1} d\tau$
(iii) $\int \psi_{33}^* \left(\widehat{\mathbf{J}}^+\right)^4 \psi_{3,-3} d\tau$

B. Which of the following operators commutes with $\widehat{\mathbf{H}} = \frac{1}{2}kx^2 + \frac{\hat{p}^2}{2\mu}$?

- (i) \mathbf{a}^{\dagger}
- (*ii*) $\mathbf{a}^{\dagger}\mathbf{a}$
- (*iii*) aa^{\dagger}
- (iv) aaaa[†]a[†]a[†]
- **C**. Is $\widehat{\mathbf{L}}_{+} = \widehat{\mathbf{L}}_{x} + i\widehat{\mathbf{L}}_{y}$ Hermitian?

D. Is $2^{-1/2}[\psi_{LM_L} + \psi_{LM_L-1}]$ an eigenfunction of $\widehat{\mathbf{L}}_+$? Explain

3. Anharmonic Oscillator

The potential energy curves for most stretching vibrations have a form similar to a Morse potential (x is displacement from equilibrium, written as Q in lecture).

$$V_M(x) = D[1 - e^{-\beta x}]^2 = D[1 - 2e^{-\beta x} + e^{-2\beta x}].$$

Expand in a power series

$$V_M(x) = D[\beta^2 x^2 - \beta^3 x^3 + \frac{7}{12}\beta^4 x^4 + \dots].$$

In contrast, most bending vibrations have an approximately quartic form

$$V_Q(x) = \frac{1}{2}kx^2 + ax^4.$$

5.61 Problem Set #6

Here is some useful information:

$$\begin{aligned} \hat{x}^3 &= \left(\frac{\hbar}{2\mu\omega}\right)^{3/2} (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^3 \\ \hat{x}^4 &= \left(\frac{\hbar}{2\mu\omega}\right)^2 (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^4 \\ \omega &= (k/\mu)^{1/2} \\ \tilde{\omega} &= \frac{(k/\mu)^{1/2}}{2\pi c} \\ (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^3 &= \hat{\mathbf{a}}^3 + 3(\hat{\mathbf{N}} + 1)\hat{\mathbf{a}} + 3\hat{\mathbf{N}}\hat{\mathbf{a}}^{\dagger} + \hat{\mathbf{a}}^{\dagger 3} \\ (\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^4 &= \hat{\mathbf{a}}^4 + \hat{\mathbf{a}}^2[4\hat{\mathbf{N}} - 2] + [6\hat{\mathbf{N}}^2 + 6\hat{\mathbf{N}} + 3] + \hat{\mathbf{a}}^{\dagger 2}(4\hat{\mathbf{N}} + 6) + \hat{\mathbf{a}}^{\dagger 4} \\ \hat{\mathbf{N}} &= \hat{\mathbf{a}}^{\dagger}\hat{\mathbf{a}}. \end{aligned}$$

The power series expansion of the vibrational energy levels is

$$E_v = hc[\tilde{\omega}(v+1/2) - \tilde{\omega}\tilde{x}(V+1/2)^2 + \tilde{\omega}\tilde{y}(V+1/2)^3].$$

- **A**. For a Morse potential, use perturbation theory to obtain the relationships between (D, β) and $(\tilde{\omega}, \tilde{\omega}\tilde{x}, \tilde{\omega}\tilde{y})$. Treat the $(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^3$ term through second-order perturbation theory and the $(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^4$ term only through first-order perturbation theory. [**HINT**: you will find that $\tilde{\omega}\tilde{y} = 0$.]
- **B**. (Optional Problem) For a quartic potential, find the relationship between $(\tilde{\omega}, \tilde{\omega}\tilde{x}, \tilde{\omega}\tilde{y})$ and (k, b) by treating $(\hat{\mathbf{a}} + \hat{\mathbf{a}}^{\dagger})^4$ through second-order perturbation theory.

A Note about Phase Ambiguity

When one uses $\hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger}$ and $\widehat{\mathbf{N}}$ operators to generate all Harmonic Oscillator wavefunctions and calculate all integrals, it is easy to forget what the explicit functional forms are for all of the $\psi_v(x)$. In particular, is the innermost (near x_-) or outermost (near x_+) lobe of the ψ_v always positive? Use $\hat{\mathbf{a}}^{\dagger} = 2^{-1/2} \left(\hat{x} - i\hat{p}\right)$ to show that the outermost lobe of all $\psi_v(x)$ is always positive, given that

$$\psi_v(x) = [v!]^{-1/2} (\hat{\mathbf{a}}^{\dagger})^v \psi_0(x)$$

and that $\psi_0(x)$ is a positive Gaussian. Apply \hat{x} and $k - i\hat{p}$ to the region of $\psi_0(x)$ near $x_+(E_0)$ to discover whether the region of $\psi_1(x)$ near $x_+(E_1)$ is positive or negative.

4. Semi-Classical Treatment of H-Atom-Like Systems

The radial part of the H-atom Hamiltonian includes the effective potential

$$V_{\ell}(r) = -\frac{1}{r} + \frac{\ell(\ell+1)}{2r^2}.$$

The eigenfunctions and eigenvalues of this radial problem are obtained from a 2nd order differential equation for $\chi_{n,\ell}(r) = rR_{n,\ell}(r)$

$$\left[\frac{-\hbar^2}{2\mu_H}\frac{d^2}{dr^2} - V_\ell(r)\right]\chi_{n,\ell}(r) = E_{n,\ell}\chi_{n,\ell}(r).$$

You are going to understand this problem using a semi-classical approximation, without actually solving the differential equation.

- **A**. For a 1-dimensional problem (OK to choose $\ell = 0$), where n = 0 is the quantum number for the lowest energy level, what is the relationship between n and the number of internal nodes?
- **B**. The de Broglie relationship, $\lambda = h/p$, may be generalized to a system where p is dependent on r, via the classical mechanical definition of p(r)

$$p(r) = [2m(E_{n\ell} - V_{\ell}(r))]^{1/2} = h/\lambda(r).$$

Thus the semi-classical wavelength is

$$\lambda(r) = h[2m(E_{n,\ell} - V_{\ell}(r))]^{-1/2}.$$

The following integral equation enables you to compute the number of semi-classical wavelengths between the turning points of the $V_{\ell}(r)$ at energy $E_{n,\ell}$:

$$\frac{1}{h} \int_{r_{-}(E_{n,\ell})}^{r_{+}(E_{n,\ell})} p_{E_{n,\ell}}(p) dr = \# \text{ of wavelengths.}$$

Justify this equation by reference to an infinite box of width a.

C. If the lowest energy level has quantum number n = 0 and $\psi_{n=0}(r)$ has zero internal nodes, then how many internal nodes does the $\psi_{n-4}(r)$ function have?

How many wavelengths fit between the turning points of $V_{\ell}(r)$ at $E_{n=4}$?

D. There is a semi-classical quantization rule (corrected for tunneling of the wavefunction into the classically forbidden $E < V_{\ell}(r)$ regions)

$$\int_{r_{-}(E_{n})}^{r_{+}(E_{n})} p_{E}(r) dr = \frac{h}{2}(n+1/2)$$

that tells you

- (i) The energy of the n^{th} level (by iterating E until the quantization condition is satisfied);
- (*ii*) how many energy levels lie at or below E; and
- (*iii*) what is the density of states, $\frac{dn}{dE}\Big|_E$, or

$$\frac{n(E+dE) - n(E-dE)}{2dE}.$$

Use the semi-classical quantization condition to find the energy levels of a harmonic oscillator. (You have to evaluate a do-able integral.)

- **E**. What does the generalized de Broglie definition of $\lambda(r)$ tell you about the locations of nodes for $\ell = 0$ of the **H** atom?
 - (i) Compute the r value of the innermost internal node in $\chi_{n,\ell}(r)$ for $\ell = 0, n = 10$ and n = 20, where

$$E_{10s} = \frac{-hc\Re_H}{10^2}, \qquad \Re_H = 109679 \text{ cm}^{-1}.$$

This will show you that the innermost nodes for all $n \gtrsim 6$ members of any $n\ell$ Rydberg series occur at approximately the same value of r.

(*ii*) For 10s, sketch the locations of all of the internal nodes. Which nodes are closest together and which are the furthest apart?

Parts \mathbf{F} through \mathbf{J} are optional

The next sequence of questions will lead you to estimate the amplitudes of the lobes of $|\psi_{n\ell}(r)|^2$ between each pair of adjacent nodes.

F. The classical mechanical oscillator period for each $n\ell$ level may be estimated from

$$\tau_{n,\ell} = \left[\frac{E_{n+1/2,\ell} - E_{n-1/2,\ell}}{h}\right].$$

Estimate the oscillation period for the 10s state.

G. Derive the time required for a classical electron to travel from the $(n-1)^{\text{th}}$ to the $(n+1)^{\text{th}}$ internal node with reference to the equations below:

$$r$$
 of the nth node is denoted as $r_{[n]}$
$$\lambda \left(r_{[n]} \right) = \frac{h}{p\left(r_{[n]} \right)}$$

$$\nu \left(r_{[n]} \right) = p \left(r_{[n]} \right) / m_e$$
$$\Delta t_{[n]} = \frac{\lambda \left(r_{[n]} \right)}{\nu \left(r_{[n]} \right)}.$$

H. The *probability* of finding a classical particle moving at positive velocity between the $(n-1)^{\text{th}}$ and $(n+1)^{\text{th}}$ nodes is

$$\frac{\Delta t_{[n]}}{\tau_{n,\ell}}.$$

 $\lambda_{n,\ell}^*(r)\lambda_{n,\ell}(r)$ is an oscillatory function, oscillating between 0 and twice the node-tonode probability. Estimate $\psi_{n,\ell}^*\left(r_{[n]}\right)\psi_{n,\ell}\left(r_{[n]}\right)$ and $|\psi_{n,\ell}\left(r_{[n]}\right)|$.

I. How would you use the results that you have derived here to estimate the expectation value of r^k for any value of k [HINT: a sum of each node-to-node region]

$$r^k \rangle = \int_{-\infty}^{\infty} \psi_{n,\ell}^* r^k \psi_{n,\ell} dr?$$

J. For non-hydrogenic atoms, it is possible to replace the Rydberg equation (integer-n) by

$$\begin{split} E_{n^*,\ell} &= -\frac{hc\Re}{n_\ell^{*2}} \\ n_\ell &= n-\delta_\ell \end{split}$$

where δ_{ℓ} is the "quantum defect." n_{ℓ}^* can be determined empirically from

$$E_{\infty} - E_{n^*\ell} = \frac{hc\Re}{n_{\ell}^{*2}}$$
$$n^* = \left[\frac{hc\Re}{E_{\infty} - E_{n^*\ell}}\right]^{1/2}$$

and

$$[E_{n^*\ell} - E_{n^*\ell-1}] \approx \frac{2hc\Re}{n^{*3\ell}}.$$

Are these semi-classical equations sufficient to *approximate* the expected values of all properties of all Rydberg states of all atoms?

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.